Input buffer of an integrated semiconductor circuit

Miscellaneous active electrical nonlinear devices – circuits – and – Specific signal discriminating without subsequent control – By amplitude

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C327S068000, C327S333000

Reexamination Certificate

active

06480039

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates to input buffers of an integrated semiconductor circuit having different operating modes.
Integrated circuits have input buffers for connecting the integrated circuit to external input signals, for example. Frequently used driver circuits for input buffers are, for example, CMOS inverter circuits, which are principally distinguished by high switching speeds and low static leakage currents.
Particularly in the case of integrated circuits having a comparatively low supply voltage, simple CMOS inverter circuits can no longer be operated satisfactorily in their intended function. As a result of in some instances lower switching thresholds of the inverter circuit, there is in part the risk of the switching levels of the input signals being detected erroneously. The consequence of this may be erroneous switching operations. These may, in addition, be increasingly caused by interference signals, since the interference susceptibility of an inverter circuit increases with a lower supply voltage as a result of its lower switching levels.
In order to avoid the disadvantages mentioned above, driver circuits of input buffers have differential amplifiers, for example, in which the input signal is applied to one input and a variable reference potential for controlling the switching threshold is applied to the other input. However, a static current generally flows through a differential amplifier circuit and, for example when a plurality of input buffers with differential amplifiers are used, can lead to a considerable minimum current consumption of the integrated circuit.
In order to obtain a lower current consumption in a current-saving mode in comparison with a normal operating mode of the integrated circuit, differential amplifiers of input buffers that are not required in the current-saving mode are usually switched off. The input buffers or differential amplifiers whose input signals serve for controlling the changeover between the operating modes of the semiconductor circuit either remain in the active state, in order to ensure a fast changeover, or they are likewise switched off. This leads to a relatively long activation time of the relevant input buffer.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide an input buffer of an integrated semiconductor circuit, which overcomes the above-mentioned disadvantages of the prior art devices of this general type, which, in one of a plurality of operating modes of the semiconductor circuit, has an input buffer current consumption which is as low as possible, in conjunction with a comparatively small area requirement.
With the foregoing and other objects in view there is provided, in accordance with the invention, an integrated semiconductor circuit. The integrated semiconductor circuit includes a plurality of input buffers, each of the input buffers have a terminal for receiving an input signal. The input signal of at least one of the input buffers controls a changeover between operating modes, including a first operating mode and a second operating mode. The input buffer for controlling the changeover between the operating modes has a driver circuit with an inverter circuit operating as intended in the first operating mode and the second operating mode. Remaining other ones of the input buffers each have a differential amplifier circuit being switched off in the second operating mode.
The integrated semiconductor circuit contains a plurality of input buffers each having a terminal for an input signal. At least one of the input buffers serves for controlling the changeover between the first operating mode and the second operating mode of the semiconductor circuit, which input buffer has a driver circuit with an inverter circuit which can be operated as intended in the first and second operating modes. The remaining input buffers each have a differential amplifier circuit, which is switched off in the second operating mode. By way of example, the first operating mode is the normal operating mode of the semiconductor circuit, and the second operating mode is the current-saving mode of the semiconductor circuit, which has a lower minimum current consumption in comparison with the normal operating mode.
Since a driver circuit with an inverter circuit is used for controlling the changeover between the operating modes, a lower static minimum current consumption is achieved in comparison with the use of a differential amplifier circuit as is known in the prior art. In this case, the inverter circuit is configured in such a way that it has good and reliable switching behavior even in the case of applications having a comparatively low supply voltage in comparison with a differential amplifier circuit. The inverter circuit of the input buffer can thus be operated as intended in the first and second operating modes. The input buffers which are not required for the second operating mode, or their differential amplifiers, are switched off for the purpose of reducing the static minimum current consumption in the second operating mode.
The semiconductor circuit according to the invention is additionally distinguished by a comparatively small space requirement since the inverter circuit can be operated as intended in both operating modes and, consequently, no additional circuit is necessary, for instance for a differential amplifier circuit. The semiconductor circuit according to the invention can therefore advantageously be used principally in circuits that are provided for operating in mobile applications, such as mobile telephones or laptops, for example.
In one embodiment according to the invention, the inverter circuit has switching transistors and a hysteresis transistor, whose control terminal is connected to an output of the driver circuit and whose controlled path is connected in parallel with the controlled path of one of the switching transistors. The provision of the hysteresis transistor results in that the switching threshold of the inverter circuit is shifted toward higher switching thresholds, particularly in the case of a hitherto critical low-high transition of the input signal.
In an advantageous development, the driver circuit of the input buffer for controlling the changeover between the operating modes has a further inverter circuit connected downstream of the inverter circuit mentioned above. Disposing the further inverter circuit upstream of the control terminal of the hysteresis transistor achieves not only complete blocking of the hysteresis transistor but also a greater edge steepness of the drive signal for the control input of the hysteresis transistor, with the result that the latter has very short switching times.
In a further refinement of the inverter circuit according to the invention, the inverter circuit has at least two switching transistors of different conductivity types, which are dimensioned differently depending on the conductivity type. By way of example, when a CMOS inverter stage is used, the P-channel transistors are dimensioned to be stronger with regard to the current yield than the N-channel transistors. In this way, the reduced conductivity of the P-channel transistors in case of lower supply voltages is at least partly compensated for. In this connection, it is likewise possible, as an alternative or in addition to the different dimensioning of the switching transistors, to connect a large number of P-channel transistors in parallel, in order to increase the current yield of the P-channel transistors in this way.
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in an input buffer of an integrated semiconductor circuit, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
Th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Input buffer of an integrated semiconductor circuit does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Input buffer of an integrated semiconductor circuit, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Input buffer of an integrated semiconductor circuit will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2977241

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.