Inline lapping of magnetic tape

Abrading – Abrading process – With critical nonabrading work treating

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C451S059000, C029S603160, C264S147000, C264S162000

Reexamination Certificate

active

06811472

ABSTRACT:

TECHNICAL FIELD
The invention relates to magnetic recording media, and in particular, lapping of magnetic tape.
BACKGROUND
Magnetic tape is often used for storage and retrieval of data, and comes in many widths and lengths. Magnetic tape remains an economical medium for storing large amounts of data. For example, magnetic tape cartridges or spools of magnetic tape are often used to back up large amounts of data for large computing centers. Magnetic tape cartridges also find application in the backup of data stored on smaller computers such as workstations, desktop computers and laptop computers.
The creation of magnetic tape involves a number of different processing steps. For example, the processing may start with a wide roll of polymeric film, sometimes referred to as a stockroll. The wide film is then coated in a coating process. For example, the wide roll of film may be coated with a nonmagnetic underlayer followed by a magnetic layer on the front side and another layer on the back side to create a wide roll of magnetic tape. A calendaring process then is used to compress and smooth the coated magnetic material on the tape. The coating and calendaring processes typically require the tape to be un-spooled from a first stockroll and then re-spooled onto a second stockroll. After coating and calendaring, the wide roll of tape is typically cut in a slitting process to realize a number of narrow magnetically coated tape strands cut to the desired width. Again, this requires the roll of tape to be un-spooled. Each individually cut strand of magnetic tape typically is then re-spooled, and the individually spooled strands can be separated to realize individual “tape pancakes.” In this disclosure, a “tape pancake” refers to a spool of magnetic tape that has been cut to a desired width.
Each individual tape pancake is then typically un-spooled again and then burnished and wiped before being re-spooled. For example, the tape in each individual tape pancake may be burnished by scraping, vaming, lapping, or a combination of different burnishing techniques. Scraping techniques typically involve feeding the tape past a scraping mechanism to smooth or alter the surface of the tape. Vaming techniques utilize a rotating cylinder that rotates in a direction opposite the direction of incoming tape. The rotating cylinder, for example, is typically coated with industrial grade diamonds to smooth or alter the surface of the tape as it passes by and contacts the rotating cylinder. Lapping techniques are more complicated, but are generally more effective in burnishing the surface of the tape. Lapping techniques utilize a lapping film that is fed in a direction opposite the direction of incoming tape. For example, the lapping film may pass in one direction over a supporting structure referred to as a lapping shoe. The tape is passed over the lapping shoe in the opposite direction. The lapping shoe forces the lapping film into contact with the surface of the tape as the tape and lapping film feed past one another in opposite directions. In this manner, the lapping film can be used to effectively burnish the surface of the tape.
After burnishing, the tape is typically degaussed in a degaussing process. If desired, servo patterns can be magnetically written on the tape, and the tape may be spooled into a cartridge, which can then be sold as a magnetic tape cartridge. Alternatively, the burnished tape pancake may be sold with or without writing the servo patterns on the tape.
The various processing steps involved in producing magnetic tape are conventionally performed as separate and distinct stages. For example, the slitting process is typically performed independently from the other processes. Consequently, for each processing stage, the tape is typically un-spooled and processed, and then re-spooled. For this reason, each individual tape pancake typically requires handling by operators after slitting and prior to burnishing. This repeated handling can reduce media quality. In addition, the repeated spooling and un-spooling of the tape complicates the manufacturing process and can increase manufacturing costs.
SUMMARY
In general, the invention is directed to techniques for inline lapping of magnetic tape. The lapping process is “inline” in the sense that it is performed with one or more other magnetic tape manufacturing processes. In this manner, the invention is capable of reducing the number of times the magnetic tape is un-spooled and then re-spooled. Consequently, the amount of handling of the individual tape pancakes can also be reduced, thus avoiding damage to the edge of the tape, or other damage associated with tape pancake handling. Reducing the number of times the magnetic tape is spooled and un-spooled can also simplify the manufacturing process.
In various embodiments, the invention provides methods, apparatuses and systems for realizing inline lapping. Again, inline lapping refers to a lapping process that is integrated with one or more other tape processing steps. In other words, inline lapping does not require the tape to be un-spooled and then re-spooled solely for the lapping step of the magnetic tape manufacturing process. Rather, when the tape is un-spooled, both lapping and one or more other processing steps, such as the slitting process can be performed before the tape is re-spooled. Inline lapping can improve throughput, and at the same time may improve media quality.
In one embodiment, the invention integrates the tape slitting process and the lapping process into a single inline process. For example, a method may include un-spooling a roll of wide magnetic tape and cutting the wide magnetic tape into a number of individual narrow magnetic tape strands. The method may also include lapping each of the individual narrow magnetic tape strands prior to re-spooling, and then re-spooling each of the individual narrow magnetic tape strands. The tape may also be wiped or otherwise cleaned to remove debris prior to re-spooling. In particular, an inventive wipe unit as described in detail below can provide effective wiping of magnetic tape, especially at the tape edges.
For inline lapping to be more effective, the tension in each of the individual narrow magnetic tape strands can be separately controlled. For example, separately controlling tension in each of the individual narrow magnetic tape strands may involve controlling the torque with a number of magnetic clutch mechanisms, wherein each of the number of magnetic clutch mechanisms correspond to one of the individual narrow magnetic tape strands. Separate tension control for the individually cut narrow magnetic tape strands can help ensure that the lapping is more effective to smooth the magnetic surface of the tape and thereby reduce the likelihood of errors in the magnetic coating on the tape. In particular, tension control can make the result of the lapping process more uniform from strand to strand.
In one particular case, after cutting the wide magnetic tape into a number of individual narrow magnetic tape strands, the tape strands are separated into even numbered individual narrow magnetic tape strands and odd numbered individual narrow magnetic tape strands. In other words, individually cut narrow magnetic tape strands are separated such that every other strand is fed through one of two lapping units on an alternating basis. Thus, the even and odd numbered tape strands are formed adjacent one another in the slitting process, but separated for the lapping process.
In another embodiment, the invention is directed toward a lapping station for lapping magnetic tape. For example, the lapping station may include a first lapping unit that laps a first set of magnetic tape strands, and a second lapping unit that simultaneously laps a second set of magnetic tape strands. For example, even numbered individual narrow magnetic tape strands can be grouped in the first set and odd numbered individual narrow magnetic tape strands can be grouped in the second set. The first set of tape strands can be lapped by the first lapping unit, and th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Inline lapping of magnetic tape does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Inline lapping of magnetic tape, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Inline lapping of magnetic tape will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3348372

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.