Incremental printing of symbolic information – Ink jet – Fluid or fluid source handling means
Reexamination Certificate
1999-01-19
2001-10-02
Le, N. (Department: 2861)
Incremental printing of symbolic information
Ink jet
Fluid or fluid source handling means
Reexamination Certificate
active
06296352
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to an ink supply container comprising an ink chamber wherein the ink supply container is provided with an ink filling opening leading into the ink chamber and an ink outflow opening leading out of the ink chamber, the ink outflow opening being suitable for connection to an inkjet printhead, the ink supply container further being provided with, or at least being connectable to, means for maintaining a negative pressure in the ink chamber. The present invention also relates to an inkjet system comprising an inkjet printhead and an ink supply container.
In an inkjet arrangement, a negative pressure should be present in the ink reservoir or in the ink duct connected to the nozzles of an inkjet printhead in order to prevent undesirable leakage of the ink through the nozzles. This requirement means that replenishing an ink supply container with ink is not an immediately simple matter. Unless a closed throwaway system is used, additional means must be provided for replenishment or else the ink supply container must be provided with a special construction to render replenishment possible.
In arrangements where the inkjet printhead is located above the ink reservoir, a negative pressure can be obtained hydrostatically as known, for example, from U.S. Pat. No. 4,571,599. This patent describes how a negative pressure can be maintained at the nozzles of an inkjet printhead by utilizing a completely shut-off main reservoir connected thereto and situated at a lower level than the inkjet printhead, and in which a negative pressure prevails. An auxiliary reservoir is present in this main reservoir and is in liquid communication therewith and contains an air bubble in which the pressure is equal to the atmospheric pressure. The atmospheric pressure is maintained therein by means of a diaphragm which is air-permeable but liquid-impermeable. A change of the ink level and hence of the pressure in the main reservoir is cancelled by admitting air into the auxiliary reservoir. A disadvantage of an arrangement of this kind is the requirement that the ink reservoir must be situated beneath the inkjet printhead in order to obtain the required hydrostatic pressure drop. Also, the system as described is designed as a throwaway system and the ink cannot be replenished.
In arrangements in which the inkjet printhead is situated at the same level as or a lower level than the inkjet reservoir, other methods must be applied to maintain a negative pressure.
For example, U.S. Pat. No. 4,509,062 describes an inkjet arrangement wherein the inkjet printhead is situated beneath a closed ink reservoir. The reservoir is in liquid communication with the nozzles of the inkjet printhead. In this case the required constant negative pressure is obtained by means of a diaphragm defining the ink reservoir, with an external force being applied to the diaphragm by means of a spring. The description also states that the diaphragm and spring can be combined by making the diaphragm of an elastic material. There is no indication how the reservoir can be replenished with ink.
U.S. Pat. No. 5,039,999 describes how a constant negative pressure is maintained in a closed inkjet reservoir by means of a piston in a cylindrical part of the ink reservoir. In this case the cylinder is in liquid communication with the closed ink reservoir. The volume of the ink reservoir is enlarged by the movement of the piston with a negative pressure being obtained therein. The space between the cylinder and the piston wall is, in this case, hermetically sealed by the ink present therein. The ink reservoir is closed by a special filling opening. Air bubbles are trapped in circular grooves between the piston and the cylinder wall. To fill the reservoir, a refill opening is used which is sealed by means of a plug. Continuous or automatic replenishment is not possible with this arrangement.
European Patent EP 0 444 654 describes an inkjet system with a closed ink reservoir provided with an ink injection opening and an air outlet valve. The required negative pressure is obtained by a sponge-like material present in the ink reservoir. In the operating mode, the ink injection opening forms the ink outlet duct so that an inkjet printhead connected to the ink outlet duct must be removed for any replenishment to take place.
European Patent EP 0 645 244 describes an inkjet arrangement wherein the inkjet printhead is situated beneath or next to an ink reservoir. The ink reservoir is removably connected, via a leak-free coupling, to a liquid transport duct leading to the nozzles of an inkjet printhead. The required negative pressure needed to compensate for the hydrostatic pressure and hence the spontaneous leakage of the ink is obtained by the capillary action of a sponge-like material disposed in the ink reservoir. A filter chamber is provided in this liquid transport duct and has therein an ink-permeable filter of metal gauze. The function of the metal gauze is to retain impurities in the ink. The reservoir is replaced when the ink has been used up.
U.S. Pat. No. 4,791,438 describes an inkjet arrangement wherein a negative pressures is maintained in a main reservoir by means of an extra reservoir connected via a capillary duct to the main reservoir, the negative pressure being maintained by the capillary action of said duct. Ink is fed to the extra reservoir via a supply opening intended for this purpose and sealable by means of a plug. Ink cannot be replenished continuously or automatically with this arrangement.
SUMMARY OF THE INVENTION
The ink supply container according to the PRESENT invention obviates the above disadvantages by providing that porous material is present between the ink filling opening and the ink chamber.
Suitably selected porous material in an ink-saturated state is permeable to ink but practically impermeable to air. As a result negative pressure can be maintained in the ink chamber while a continuous supply of ink is provided via the porous material. The negative pressure in the ink chamber contributes to the ink moving from the ink supply opening via the porous material to the ink chamber and remaining there. If the ink supply opening is situated above the ink chamber in an operative state, gravity can also play a part in the ink moving process. If no more ink is supplied, a quantity of ink determined by the capillary action will remain in the openings of the porous material. The surface tension exerted as a result of the ink in each opening is sufficient to counteract the negative pressure. Only when ink is again supplied via the ink supply opening is this surface tension broken and the ink can again move to the ink chamber.
In this connection it should be noted that the porous material also has a filter function in order to retain unwanted impurities in the ink supply. Also, providing filter material such as the said porous material at the ink supply opening instead of in a liquid transport duct between the ink chamber and an inkjet printhead is more advantageous due to the higher permissible throughflow resistance of the filter material. The minimum throughflow resistance in the first case is determined by the average quantity of ink to be transported, and not by the instantaneous quantity of ink to be transported. The throughflow resistance can then be greater and the openings smaller.
One advantageous embodiment is characterised in that the porous material has the smallest dimension in the direction pointing towards the ink chamber. An example of this is the thin wall of porous material closing off the ink chamber. In the case of a supply of ink, there is in this case a large movement of ink through the porous material in the direction of the ink chamber. For a hermetic seal, only a relatively thin layer of ink-saturated material is required, while a large surface towards the ink chamber is desirable for optimal supply.
Another advantageous embodiment is characterised in that the porous material is permeable to ink both in the direction pointing towards the ink chamber and in
Hollands Peter Joseph
Reinten Hans
Le N.
Oce--Technologies B.V.
Vo Anh T. N.
LandOfFree
Ink supply container suitable for connection to an inkjet... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ink supply container suitable for connection to an inkjet..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ink supply container suitable for connection to an inkjet... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2588417