Incremental printing of symbolic information – Ink jet – Medium and processing means
Reexamination Certificate
2003-05-20
2004-09-21
Meier, Stephen D. (Department: 2853)
Incremental printing of symbolic information
Ink jet
Medium and processing means
C428S032100, C428S195100
Reexamination Certificate
active
06793333
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a receiving sheet for ink-jet printing. More particularly, the present invention relates to an ink receiving sheet comprising a corn starch matt agent and adapted to be used with a concentrated ink, especially for obtaining medical images showing high optical density.
2. Background of the Art
In a typical ink jet recording or printing system, ink droplets are ejected from a nozzle at high speed towards a recording element or medium to produce an image on the recording medium. The ink droplets, toner, or recording liquid, generally comprise a recording agent, such as a dye or pigment, and a large amount of solvent. The solvent, or carrier liquid, typically is made up of water, an organic material such as a monohydric alcohol, a polyhydric alcohol or mixtures thereof.
An ink jet recording element typically comprises a support having on at least one surface thereof an ink-receiving or image-recording layer. The recording elements may include either those intended for reflection viewing, which have an opaque support, or those intended for viewing by transmitted light, which have a transparent support.
Medical images, such as radiographic images, are typically viewed on a blue transparent support and require a high optical density, i.e., usually higher than 3.00. Medical images of such a high optical density are typically obtained by means of silver technology, in which the image is formed by exposing a light-sensitive silver salt and the subsequent formation of black silver by development (reduction) of the light-sensitized silver salt.
The progress and development of the ink-jet technology and the relative costs between the silver technology and ink-jet imaging have increased the demand for obtaining medical images with the ink-jet technology.
However, ink jet technology involves a problem unique to the technology. When high-density printing is conducted on a transparent recording medium, the desired maximum optical density to be produced in the ink-jet image is hard to achieve compared with the available optical density of an image obtained with the silver salt method. This is a result of the high transparency of the coloring material.
U.S. Pat. No. 6,342,096, 6,341,855 and 6,059,404 attempt to solve this problem of low maximum optical densities by providing an ink-jet recording method using a mix of different inks printed on a receiving sheet that is adapted to receive such different inks. This solution has proved expensive and has not led to good results.
U.S. Pat. No. 5,621,448 and 5,621,449 attempt to solve this ink-jet density problem with a combination of the silver and ink-jet technologies. U.S. Pat. No. 5,621,448 discloses a recording method comprising the consecutive steps of: (1) image-wise projecting droplets of liquid, called ink, containing halide ions, onto a receiving material containing at least one substantially light-insensitive silver salt. The ink and/or receiving material contains at least one reducing agent for the silver salt, (2) uniformly photo-exposing the receiving material to form silver nuclei from silver halide obtained in step (1), and (3) heating the receiving material during and/or after the photo-exposure step. This forms a silver image in correspondence with the area wherein the ink has been deposited on the receiving material. U.S. Pat. No. 5,621,449 discloses an ink jet recording method comprising the steps of: (1) image-wise projecting liquid, called ink, in the form of droplets onto a receiving material. The receiving material contains a substance that, by chemically reacting with another substance contained in said droplets, is capable of forming a visually detectable product. The process is characterized in that according to a first mode, the receiving material contains at least one substantially light-insensitive organic silver salt and the ink contains a reducing agent for the silver salt, and according to a second mode, the receiving material contains the reducing agent and the ink contains the silver salt, and optionally (2) heating the receiving material during and/or after the deposition of the ink on the receiving material to start or enhance reduction of the silver salt(s) forming thereby image-wise a deposit of silver metal in the receiving material. This solution to obtaining higher density ink-jet images is still expensive and requires special apparatus and several steps in order to get the desired images.
U.S. Pat. No. 4,503,111 discloses an ink-jet receiving sheet comprising a support coated with an ink receiving layer. The support, consisting of a transparent base sheet, such as cellulose acetate or polyethylene terephthalate, is coated with a mixture of polyvinylpyrrolidone and a compatible matrix-forming polymer, such as gelatin or polyvinyl alcohol. The sheet is disclosed to be used in ink jet printers and in pen-type graphics recorders to record large color-filled areas with high color density and excellent resolution.
SUMMARY OF THE INVENTION
An ink receiving sheet comprises a support, at least one receiving layer and a top coat layer, The receiving layer comprises a hydrophilic binder and a vinyl polymeric compound and has a total coverage weight of at least 12 g/m
2
. The top coat layer is free of vinyl polymeric compounds and comprises a hydrophilic binder and a corn starch matting agent.
DETAILED DESCRIPTION OF THE INVENTION
The ink receiving sheet comprises a transparent support, at least one ink receiving layer and a top coat layer. The transparent support used in the ink receiving sheet of the invention may include any transparent film and especially includes polymeric films such as films of polyester resins, cellulose acetate resins, acrylic resins, polycarbonate resins, polysulfone resins, polyvinyl chloride resins, poly(vinylacetal)resins, polyether resins, polysulfonamide resins, polyamide resins, polyimide resins, acetate resins (e.g., cellulose triacetate), cellophane or celluloid and glass plates. The thickness of the transparent support is preferably from 10 to 200 &mgr;m.
A subbing or primer layer to improve the adhesion between the support and the ink receiving layer(s) optionally may be provided. Several subbing layers for this purpose are widely known in the photographic art and include, for example, polymers or copolymers of vinylidene chloride such as vinylidene chloride/acrylonitrile/acrylic acid terpolymers or vinylidene chloride/methyl acrylate/itaconic acid terpolymers. A further adhesion layer of hydrophilic binder can be coated as first layer before coating the ink receiving layer.
The ink receiving layer mainly comprises a hydrophylic binder and at least one vinyl polymeric compound. The ink receiving layer may optionally comprise several other components. Useful components are represented by filters, surfactants, hardeners, plasticizers, antistatic agents and the like. The ink receiving layer has a total coverage weight of at least 12 g/m
2
, preferably of at least 15 g/m
2
.
The top coat layer mainly comprises a hydrophilic binder and a corn starch matting agent. The top coat layer may optionally comprise several other components. Useful components are represented by surfactants, hardeners, antistatic agents, ultraviolet radiation absorbers and plasticizers. The top coat layer is substantially free or free of vinyl polymers or vinyl polymeric compounds.
The polymeric binder employed in the top coat layer and in the ink-receiving layer may include any useful hydrophilic polymer, either natural or synthetic. Useful hydrophilic polymers include acidified starch, ether derivatized starch, polyalkylene glycols (such as polyethylene glycol and polypropylene glycol), cellulose derivatives (such as hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethylmethyl cellulose, hydroxypropylmethyl cellulose, hydroxybutylmethyl cellulose, methyl cellulose, sodium carboxymethyl cellulose, sodium carboxymethylhydroxethyl cellulose, ethylhydroxyethyl cellulose, cellulose sulfate), gelatin, gelatin derivatives, carrage
Brignone Diego
Franceschini Paola
Gagliardo Andrea
Manca Giovanni Maria
Ferrania S.p.A.
Mark A. Litman & Associates
Meier Stephen D.
Shah Manish
LandOfFree
Ink receiving sheet does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ink receiving sheet, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ink receiving sheet will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3242133