Ink like or cream-like exothermic composition, exothermic...

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Thermal applicators

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C126S263020, C126S263050, C126S263070, C428S034300, C428S035200, C428S035700, C604S020000, C604S108000, C604S113000, C604S114000, C604S291000, C607S104000, C607S108000, C607S111000, C607S114000

Reexamination Certificate

active

06436128

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to formation of a range of fluid exothermic compositions and of having these enclosed in what are known generally as pouches by such a transfer, which now enable high-speed manufacture of ultra-thin filled pouches, the filled composition being uniformly distributable, and each of such exothermic pouches being thin, soft and flexible and excelled in touch in use because of the fluid feature of, e.g., the transferred exothermic composition which can be packed in a mating bag partly or entirely fixed thereto, and the invention also relates thereto.
2. Description of the Related Art
In recent years, disposable flat body warmers such as exothermic devices having an exothermic composition enclosed in a flat pouch made of a gas-permeable or gas-tight filmy or thin covering material are widely in use.
Some disposable body warmers have an adhesive layer formed on one surface thereof to be applied directly or through underwear to the skin and also proposals have been made having a wet compress agent contained or carried therein for use as a wet compress or having a medication contained or carried therein for use as a skin absorbable medication (see Japanese Patent laid-open Publication No. 2-149272).
As a manufacturing method for such exothermic devices, generally adopted are such methods as having a given exothermic composition deposited in a given region of the substrate and a gas-permeable cover placed thereon. This is followed by sealing the edges by heat-sealing or bondage by the use of a hot-melt adhesive.
Exothermic devices thus manufactured have the exothermic reaction inhibited before use, hence the exothermic composition is in the gas-tight outer bag as they are stored or distributed.
As conventional exothermic compositions were known, besides metal powder and water essential for an exothermic reaction, carbon components such as carbon or active carbon are known for enhancing the exothermic reaction, metal halides for successive progress of the exothermic reaction through destruction of a surface oxide film of metal powder and further water-retainers such as wood flour.
As a method of depositing the powdery composition, there are known alternative methods of moving the substrate intermittently and depositing the powdery exothermic composition when the substrate is stopped and moving the exothermic composition discharging port at the same speed as the substrate to deposit the powdery exothermic composition on the moving substrate. For enhancing the manufacture, however, the latter method is preferred.
When the exothermic composition is formed powdery as in the past, the powdery exothermic composition is compounded in an optimum state such that the exothermic reaction, namely the oxidation reaction, is likely to occur. Moreover, it is powdery and highly porous, high in specific surface area and is extremely good in contact with air, thus causing immediate starting of an oxidation reaction upon contact with air.
If an oxidative reaction with air, i.e., exothermic reaction, should take place during compounding exothermic compositions at a proper ratio and during the period between manufacture of the exothermic compositions and completion of manufacture of the exothermic device, this resulting in loss due to an exothermic reaction of an exothermic composition as well as lowering of the quality of the exothermic compositions and giving rise to various problems such as coagulation of compositions resulting from the exothermic reaction. Specifically, lowering yield due to removal of coagulants, increased difficulty in handling, growing complications of machine maintenance, more strict limitation of a machine's per-day operating hours and a worker's working hours, increased difficulty of treatment or disposal of coagulants.
If the exothermic composition is powdery, oxidation reaction with air takes place after manufacture of an exothermic device and before sealing the resulting exothermic device in the gas-tight outer pouch, this resulting in fatal defects such as lowering of the quality of an exothermic device as well as of its reliability.
For prevention of an oxidation reaction of such exothermic compositions, it is possible to make the mixer gas-tight and replace the air with nitrogen before proceeding to uniform mixing of the exothermic compositions. This way, however, the mixer not only becomes more complicated and more expensive, this also results in increased costs of the exothermic compositions and exothermic devices,
Another method of depositing the exothermic composition when the substrate is stopped in the course of its intermittent movement has a drawback of the manufacturing speed getting lower, for the substrate stops and restarts frequently.
Still another method of depositing the exothermic composition onto the substrate moving at a constant speed through the deposition port being moved at the same speed enables increasing the manufacturing speed because the substrate is seldom stopped and restarted.
Since, in this case, a complicated mechanism becomes necessary for moving the deposition part for the exothermic composition at the same speed as the substrate and, worse, the exothermic composition is moistened by addition of water and, being powdery, is less frequent, there are many problems such as a strict limit for the speed of moving the mechanism, decreased reliability due to poor filling property of the exothermic composition, increased scatter of the filling rate of the exothermic composition and eccentricity of the exothermic composition in the pouch.
Although the exothermic composition is moistened by addition of water, the water content is low and proper for exothermic reaction, hence it is powdery and less liquid and it is extremely difficult to have it uniformly distributed in a predetermined region of the substrate.
Although the distribution of the exothermic composition is not uniform to some extent by, e.g., a roller as it is sealed with a covering material thereon, the distribution of the exothermic composition tends to be shifted toward a direction from which the pouch is sent. Hence, in order to increase the distribution of the exothermic composition where the porches are sent, it is necessary to make the exothermic device thicker and eliminate distribution error by shaking it by hand before use.
Hence, the exothermic devices as a whole become thicker to several mm, its feel becomes stiff and disagreeable and, worse, its softness is deteriorated with an increasing difficulty to fit the complicated curvature of the body surface with failure to fit small curvatures. Also deteriorated are prolongation and stretching behaviors, this resulting in failure to readily follow movement of the body surface and giving problems of an increased stiff feel, unpleasant feel or the like.
In order to put an exothermic device in a shoe to produce warmth, it is essential to try to have it thinner but in this respect the conventional exothermic devices which are several mm thick are by far unsatisfactory.
Especially the conventional disposable body warmers, which have filled therein powdery exothermic composition, are not constant in thickness with the exothermic composition shifting therein and, when some thereof is immovably fixed to the body surface, non-constant distribution of exothermic temperature can possibly cause a burn.
In recent years, popularized products have been arranged to prevent off-center displacement in any direction but to date there has been established no measure against displacement in any direction in any of the manufacturing processes, transport stage and distribution stage.
When the exothermic composition is stored in an outer pouch (storage pouch), the exothermic device has its inside undecompressed and in the transfer stage the exothermic composition is movable or shiftable in the exothermic device. Also for ensuring safety, it is important to have the pouch's thickness kept uniform and have the temperature distribution constant and with those hav

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ink like or cream-like exothermic composition, exothermic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ink like or cream-like exothermic composition, exothermic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ink like or cream-like exothermic composition, exothermic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2965856

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.