Ink jet transfer systems, process for producing the same and...

Stock material or miscellaneous articles – Structurally defined web or sheet – Discontinuous or differential coating – impregnation or bond

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S206000, C428S211100, C428S327000, C428S474400, C428S914000

Reexamination Certificate

active

06638604

ABSTRACT:

TECHNICAL FIELD
The invention relates to an ink-jet transfer system or an ink-jet transfer print, respectively.
BACKGROUND ART
Transfer prints enjoy a considerable popularity, as they allow the application of any graphic presentation, patterns, images or typing, notably on clothes like T-shirts, sweatshirts, shirts or any other textile substrate like for instance mouse-pads. Of particular interest are ink-jet transfer systems (ink-jet transfer prints), providing the potential users with the possibility of an individual selection of electronically obtainable graphic presentations which could be down-loaded by a computer and which could eventually be printed or pressed with an iron onto the desired clothing piece or any other textile substrate (support) by the user himself. Thereby, in a first step, the desired, electronically obtained picture is produced by the user of the transfer print upon using a computer, said print is transmitted from the computer to a suitable printer e.g. an ink-jet printer, which on its turn is printing the desired picture onto the transfer system. The transfer print thus prepared has to display a texture allowing for the further use to print it onto a textile substrate. By means of a suitable transfer print, the desired graphic presentation is brought to adhesion onto the desired textile substrate. Usually, graphic presentations are applied through a hot print and optionally through a prior cold print onto the desired textile substrate.
In recent years, considerable efforts have been undertaken in order to improve the hot transfer systems as well as the printing of the desired graphic presentations onto the textile substrate with a satisfactory quality.
For instance, U.S. Pat. No. 5,242,739 describes a heat-sensitive transfer paper which is capable to fix an image, comprising the following components: (a) a flexible cellulose containing, unwoven, textile-like paper displaying a superior and an inferior surface and (b) a melting transfer-film layer being capable to receive an image, which is situated onto the superior surface of the paper substrate, (c) as well as optionally an intermediary hot-melt layer. The film layer consists to about 15 to 80 weight-% of a film-forming binder and to about 85 to 20 weight-% of powder-like thermoplastic polymer, whereby the film-forming binder and the thermoplastic polymer do show a melting point of between about 65° C. and 180° C.
U.S. Pat. No. 5,501,902 represents a further development of U.S. Pat. No. 5,242,739, which equally consists of a two-layer system, whereby however, in order to improve the printing image, a viscosity agent for ink is further contained.
Furthermore, within the transfer prints of U.S. Pat. No. 5,501,902 there is preferably a cationic, thermoplastic polymer contained in order to improve the ink-absorbency capacity.
Pigments for receiving the ink material being mentioned by the prior art are usually polyesters, polyethylene wax, ethylen-vinylacetate-copolymers, whereas binders being mentioned are polyacrylates, styrene-vinylacetate copolymers, nitrile rubber, polyvinylchloride, polyvinylacetate, ethylene acrylate copolymers and melamine resins.
The known ink-jet transfer systems are quite successful in respect of their capacity to transfer well-resolved images onto textile substrates, however, with regard to their unfadeability or washproofness they are quite unsatisfactory. Although any graphic presentation could be printed e.g. onto a clothing piece, in an adequate quality, said presentations are washed out rather easily so that the color is fading quite rapidly. Furthermore, a whole series of commercially available products (containing PVC or melamine resins) do release toxic compounds during the iron pressing procedure, for example allyle chloride or formaldehyde and are therefore rather questionable from the ecological point of view as well as in view of public health.
Disclosure of the Invention
It was therefore an objective of the present invention to provide an ink-jet transfer system which notably avoids the above-mentioned drawbacks concerning the unsatisfactory unfadeability or the washproofness and furthermore which is ecologically advantageous.
It was furthermore an object of the present invention to provide a method for the manufacture of ink-jet transfer systems having a considerably unfadeability or washproofness.
Finally, it was an objective of the present invention to provide a printing process, whereby by means of ink-jet transfer systems, high quality graphic presentations and high unfadeability or washproofness can be printed onto textile substrates.
The above-mentioned objectives have been resolved according to the independent claims. Preferred embodiments are mentioned within the dependent claims.
The ink-jet transfer systems according to the present invention comprise a carrier material, a hot-melt layer which is on said hot-melt layer and at least one ink-receiving layer which is on said hot-melt layer, whereby the at least one ink-receiving layer contains a mixture of a highly porous pigment and a binder, whereby the molecules of the highly porous pigments and optionally of the binder and, optionally, of the hot-melt layer are capable to form essentially chemical bonds to the dyestuff molecules of the ink. While with conventional ink-jet transfer systems, the corresponding dyestuff agents—as a result of the printing onto the textile substrate for instance by iron pressing—are primarily bonded in a mechanical way, the dyestuff molecules of the ink according to the present invention are bonded through chemical bonds onto the molecules of the pigments and of the binder and optionally of the hot-melt. This is inventively achieved through the fact that the molecules of the pigments and optionally of the binder and optionally of the hot-melt dispose of reactive groups that are capable to form chemical bonds with the also reactive groups of the dyestuff molecules of the ink.
The hot-melt layer which is directly on said carrier material is a wax-like polymer, can be easily molten and can therefore be transferred to the textile substrate together with the imprinted ink-receiving layer onto the textile substrate through, for instance, iron pressing, and eventually the carrier layer, can be removed. It is the hot-melt layer which, owing to its wax-like properties, reinforces the adhesion to the textile substrate in the first place.
The ink-receiving layer (ink-layer) is situated on the hot-melt layer and primarily comprises a highly porous pigment and a binder. The highly porous pigment serves in the first place to the mechanic absorbency of the ink during the printing of the desired graphic presentation, whereby the maximum porosity guarantees a particularly high absorbency. The binders are necessary, so to fix the highly porous pigments onto the product surfaces and thus enabling the further processing (the printing) of the ink-jet transfer system.
The chemical bonds between the dyestuff molecules of the ink and the molecules of the pigments as well as the binders are, among others, formed upon providing energy, for instance by means of the iron pressing of the ink-jet transfer system according to the invention onto the textile substrate.
For the printing of the ink-jet transfer system, for instance through an ink-jet printer, commercially usual acid dyestuffs, e.g. azo dyestuffs according to formula I are used.
The ink dyestuff molecules are primarily in an anionic form in solution and also dispose of reactive groups which allow the formation of chemical bonds with reactive groups of pigment molecules as well as optionally the binder molecules. The reactive groups are basically one or more sulfonate groups or carboxylate groups per dyestuff molecule. Under suitable conditions, for instance through heating during the iron pressing of the ink-jet transfer system onto the textile substrate, chemical or rather ionic bonds or intermediary valence bonds between sulfonate groups and carboxylate groups and the reactive groups e.g. amino groups, of the pigments or binders could be

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ink jet transfer systems, process for producing the same and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ink jet transfer systems, process for producing the same and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ink jet transfer systems, process for producing the same and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3175343

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.