Ink jet recording element

Stock material or miscellaneous articles – Ink jet stock for printing – Particles present in ink receptive layer

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S032380

Reexamination Certificate

active

06677008

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to an inkjet recording element. More particularly, this invention relates to an ink jet recording element containing coated particles.
BACKGROUND OF THE INVENTION
In a typical ink jet recording or printing system, ink droplets are ejected from a nozzle at high speed towards a recording element or medium to produce an image on the medium. The ink droplets, or recording liquid, generally comprise a recording agent, such as a dye or pigment, and a large amount of solvent. The solvent, or carrier liquid, typically is made up of water, an organic material such as a monohydric alcohol, a polyhydric alcohol or mixtures thereof.
An inkjet recording element typically comprises a support having on at least one surface thereof an ink-receiving or image-forming layer, and includes those intended for reflection viewing, which have an opaque support, and those intended for viewing by transmitted light, which have a transparent support.
While a wide variety of different types of image-recording elements for use with ink jet devices have been proposed heretofore, there are many unsolved problems in the art and many deficiencies in the known products which have limited their commercial usefulness.
It is well known that in order to achieve and maintain photographic-quality images on such an image-recording element, an ink jet recording element must:
Be readily wetted so there is no puddling, i.e., coalescence of adjacent ink dots, which leads to non-uniform density
Exhibit no image bleeding
Exhibit the ability to absorb high concentrations of ink and dry quickly to avoid elements blocking together when stacked against subsequent prints or other surfaces
Exhibit no discontinuities or defects due to interactions between the support and/or layer(s), such as cracking, repellencies, comb lines and the like
Not allow unabsorbed dyes to aggregate at the free surface causing dye crystallization, which results in bloom or bronzing effects in the imaged areas
Have an optimized image fastness to avoid fade from contact with water or radiation by daylight, tungsten light, or fluorescent light
An ink jet recording element that simultaneously provides an almost instantaneous ink dry time and good image quality is desirable. However, given the wide range of ink compositions and ink volumes that a recording element needs to accommodate, these requirements of ink jet recording media are difficult to achieve simultaneously.
Ink jet recording elements are known that employ porous or non-porous single layer or multilayer coatings that act as suitable image receiving layers on one or both sides of a porous or non-porous support. Recording elements that use non-porous coatings typically have good image quality but exhibit poor ink dry time. Recording elements that use porous coatings typically contain colloidal particulates and have poorer image quality but exhibit superior dry times.
While a wide variety of different types of porous image-recording elements for use with ink jet printing are known, there are many unsolved problems in the art and many deficiencies in the known products which have severely limited their commercial usefulness. The challenge of making a porous image recording layer is to achieve a high gloss level without cracking, high color density, and a fast drying time.
U.S. Pat. No. 5,576,088 relates to an ink jet recording element wherein a gloss providing layer containing an inorganic filler and a latex is coated on top of an ink receiving layer. However, there is a problem with this element in that the drying time is slow and there is a tendency for the layer to exhibit cracks.
U.S. Pat. No. 5,912,071 relates to a recording medium comprising a substrate and a porous layer formed on the substrate wherein the porous layer comprises water insoluble resin particles preferably having a core/shell structure. However, there is no reference to the physical properties of the particles.
U.S. Pat. No. 6,099,956 relates to a recording medium comprising a support with a receptive layer coated thereon. The receptive layer comprises a water insoluble polymer that is preferably a copolymer comprising a styrene core with an acrylic ester shell. However, there is no reference to the physical properties of the particles.
It is an object of this invention to provide an ink jet recording element that has a fast ink dry time. It is another object of this invention to provide an ink jet recording element that has good image quality.
SUMMARY OF THE INVENTION
These and other objects are achieved in accordance with the invention which comprises an inkjet recording element comprising a substrate having thereon an image-receiving layer comprising a filler and coated particles comprising a polymeric hard core-polymeric soft shell, the Tg of the polymeric hard core material being greater than about 60° C., the Tg of the polymeric soft shell material being less than about 100° C., and the filler being present in the image-receiving layer in an amount of from about 50 to about 95% by weight, the substrate being paper, resin-coated paper, synthetic paper, impregnated paper, cellulose acetate or a polyester film.
The ink jet recording element of the invention provides a fast ink dry time and good image quality.
DETAILED DESCRIPTION OF THE INVENTION
As noted above, the substrate used in the invention may be porous such as paper or non-porous such as resin-coated paper; synthetic paper, such as Teslin® or Tyvek®; an impregnated paper such as Duraform®; cellulose acetate or polyester films. The surface of the substrate may be treated in order to improve the adhesion of the image-receiving layer to the support. For example, the surface may be corona discharge treated prior to applying the image-receiving layer to the support. Alternatively, an under-coating or subbing layer, such as a layer formed from a halogenated phenol or a partially hydrolyzed vinyl chloride-vinyl acetate copolymer, can be applied to the surface of the support. The papers listed above include a broad range of papers, from high end papers, such as photographic paper to low end papers, such as newsprint. In a preferred embodiment, Ektacolor paper made by Eastman Kodak Co. is employed.
The support used in the invention may have a thickness of from about 50 to about 500 &mgr;m, preferably from about 75 to 300 &mgr;m. Antioxidants, antistatic agents, plasticizers and other known additives may be incorporated into the support, if desired.
As described above, the image-receiving layer of the invention contains a filler. Any filler may be used in the invention, such as a metal oxide, metal hydroxide, calcium carbonate, barium sulfate, clay or organic particles such as polymeric beads. Examples of organic particles useful in the invention are disclosed and claimed in U.S. patent application Ser. Nos. 09/458,401, filed Dec. 10, 1999; 09/608,969, filed Jun. 30, 2000; 09/607,417, filed Jun. 30, 2000; 09/608,466 filed Jun. 30, 2000; 09/607,419, filed Jun. 30, 2000; and 09/822,731, filed Mar. 30, 2001; the disclosures of which are hereby incorporated by reference. In a preferred embodiment of the invention, the metal oxide is silica, alumina, zirconia or titania. In another preferred embodiment of the invention, the particle size of the filler is from about 5 nm to about 5000 nm. In still another preferred embodiment of the invention, the filler is present in an amount of from about 50 to about 95% by weight of materials present in the image-receiving layer.
In a preferred embodiment of the invention, the coated particles comprising a polymeric hard core-polymeric soft shell comprises polymeric particles having a core of material having a relatively high Tg which is coated with another polymer having a lower Tg. The coated particles used in the invention may be prepared by emulsion polymerization as described in “Emulsion Polymerization and Emulsion Polymers”, edited by P. A. Lovell and M. S. El-Aassar, John Wiley and Sons, 1997. For example, the coated particles is by adsorption of prepared by polymerizing a monomer in the pre

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ink jet recording element does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ink jet recording element, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ink jet recording element will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3233744

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.