Ink jet recording element

Stock material or miscellaneous articles – Ink jet stock for printing – Image viewable from either side

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S032300, C428S032290, C428S032340

Reexamination Certificate

active

06632486

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to an ink jet recording element. More particularly, this invention relates to an ink jet recording element containing pigments.
BACKGROUND OF THE INVENTION
In a typical ink jet recording or printing system, ink droplets are ejected from a nozzle at high speed towards a recording element or medium to produce an image on the medium. The ink droplets, or recording liquid, generally comprise a recording agent, such as a dye or pigment, and a large amount of solvent. The solvent, or carrier liquid, typically is made up of water, an organic material such as a monohydric alcohol, a polyhydric alcohol or mixtures thereof.
An ink jet recording element typically comprises a support having on at least one surface thereof an ink-receiving or image-forming layer, and includes those intended for reflection viewing, which have an opaque support, and those intended for viewing by transmitted light, which have a transparent support.
While a wide variety of different types of image-recording elements for use with ink jet devices have been proposed heretofore, there are many unsolved problems in the art and many deficiencies in the known products which have limited their commercial usefulness.
It is well known that in order to achieve and maintain photographic-quality images on such an image-recording element, an ink jet recording element must:
Be readily wetted so there is no puddling, i.e., coalescence of adjacent ink dots, which leads to nonuniform density
Exhibit no image bleeding
Exhibit the ability to absorb high concentrations of ink and dry quickly to avoid elements blocking together when stacked against subsequent prints or other surfaces
Exhibit no discontinuities or defects due to interactions between the support and/or layer(s), such as cracking, repellencies, comb lines and the like
Not allow unabsorbed dyes to aggregate at the free surface causing dye crystallization, which results in bloom or bronzing effects in the imaged areas
Have an optimized image fastness to avoid fade from contact with water or radiation by daylight, tungsten light, or fluorescent light
An ink jet recording element that simultaneously provides an almost instantaneous ink dry time and good image quality is desirable. However, given the wide range of ink compositions and ink volumes that a recording element needs to accommodate, these requirements of ink jet recording media are difficult to achieve simultaneously.
Ink jet recording elements are known that employ porous or non-porous single layer or multilayer coatings that act as suitable image receiving layers on one or both sides of a porous or non-porous support. Recording elements that use non-porous coatings typically have good image quality but exhibit poor ink dry time. Recording elements that use porous coatings typically have poorer image quality but exhibit superior dry times.
U.S. Pat. No. 5,851,651 relates to an ink jet recording element comprising a paper substrate with a coating comprising inorganic pigments and an anionic, organic co-binder system. The co-binder system consists of polyvinyl alcohol (PVOH) and polyvinylpyrrolidone (PVP) or a copolymer of polyvinylpyrrolidone-vinyl acetate (PVP-VA). However, there is a problem with this element in that less than desirable image quality, as measured by optical density, image bleed, and waterfastness, is obtained
German Patent DE 19,534,327A1 relates to an ink jet recording element which contains a recording layer comprising an inorganic, cationic pigment and a cationic organic binder. However, this recording layer also has less than desirable image quality, as measured by optical density, image bleed, and waterfastness.
It is an object of this invention to provide an ink jet recording element that has a fast ink dry time. It is another object of this invention to provide an ink jet recording element that has good image quality.
SUMMARY OF THE INVENTION
These and other objects are achieved in accordance with the invention which comprises an ink jet recording element comprising a substrate having thereon an image-receiving layer comprising an inorganic, anionic pigment, an organic, anionic binder and an organic, cationic mordant.
The ink jet recording element of the invention provides good image quality and fast ink dry times.
DETAILED DESCRIPTION OF THE INVENTION
The inorganic, anionic pigment useful in the invention may be a kaolin clay, a calcined clay, titanium dioxide, talc or a silicate. In a preferred embodiment of the invention, the inorganic, anionic pigment is a kaolin clay sold under the trade name Hydragloss® 92 (J. M. Huber Company). The amount of inorganic, anionic pigment used may range from about 50% to about 95% of the image-receiving layer.
The organic, anionic binder useful in the invention may be a styrene acrylic latex, a styrene butadiene latex, a poly(vinyl alcohol) or a poly(vinyl acetate). A commercially-available styrene acrylic latex useful in the invention is Acronal® S-728 (BASF Corp.). A commercially-available styrene butadiene latex useful in the invention is Styronal® BN 4606X (BASF Corp.). A commercially-available poly(vinyl alcohol) useful in the invention is Airvol® 21-205 (Air Products Inc.). A commercially-available poly(vinyl acetate) useful in the invention is Vinac® 884 (Air Products Inc.).
The organic, anionic binder may be used in an amount of from about 5% to about 20% of the image-receiving layer. In general, good results are obtained when the ratio of pigment to binder is from about 5:1 to about 8:1.
The organic, cationic mordant useful in the invention may be a polymer latex dispersion or a water-soluble polymer solution. Examples of mordants useful in the invention are disclosed in U.S. Pat. No. 5,474,843. Other useful mordants include cationic urethane dispersions sold under the trade name Witcobond® W-213 and Witcobond® W-215 (Witco Corporation).
In a preferred embodiment of the invention, the organic, cationic mordant is:
M1: poly(N-vinyl benzyl-N-benzyl-N,N-dimethyl ammonium chloride-co-styrene-co-divinyl benzene),
M2: poly(N-vinylbenzyl-N,N,N-trimethylammonium chloride-co-ethylene glycol dimethacrylate), or
M3: poly(N-vinylbenzyl-N,N,N-trimethylammonium chloride-co-divinyl benzene).
In general, good results have been obtained when the mordant polymer is present in an amount of from about 1% to about 75% by weight of the image-receiving layer, preferably from about 10% to about 20%.
Smaller quantities of up to about 10% of other binders may also be added to the image-receiving layer such as PVP sold as Luviskol® VA 64W (BASF Corp.) or copolymer PVP-VA sold as Luviquat® PQ11PN (BASF Corp.). In addition to the above major components, other additives such as pH-modifiers like nitric acid, cross-linkers, rheology modifiers, surfactants, UV-absorbers, biocides, lubricants, dyes, optical brighteners etc. may be added as needed.
The substrate may be porous such as paper or non-porous such as cellulose acetate or polyester films. The surface of the substrate may be treated in order to improve the adhesion of the image-receiving layer to the support. For example, the surface may be corona discharge treated prior to applying the image-receiving layer to the support. Alternatively, an under-coating or subbing layer, such as a layer formed from a halogenated phenol or a partially hydrolyzed vinyl chloride-vinyl acetate copolymer, can be applied to the surface of the support.
The ink jet coating may be applied to one or both substrate surfaces through conventional pre-metered or post-metered coating methods such as blade, air knife, rod, roll coating, etc. The choice of coating process would be determined from the economics of the operation and in turn, would determine the formulation specifications such as coating solids, coating viscosity, and coating speed. In a preferred embodiment, the coating formulation would have a coating solids of 40-60% and a low shear (100 rpm Brookfield) viscosity of 500-2000 centiPoise.
The image-receiving layer thickness may range from about 5 to about 60 &mgr;m, preferably from about

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ink jet recording element does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ink jet recording element, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ink jet recording element will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3152125

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.