Incremental printing of symbolic information – Ink jet – Medium and processing means
Reexamination Certificate
2000-07-06
2002-07-23
Hess, Bruce H. (Department: 1774)
Incremental printing of symbolic information
Ink jet
Medium and processing means
C347S101000, C347S106000, C428S195100, C428S500000
Reexamination Certificate
active
06422697
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to an ink jet printing method. More particularly, this invention relates to an ink jet printing method using a recording element containing a polymer and a metal ion salt.
BACKGROUND OF THE INVENTION
In a typical ink jet recording or printing system, ink droplets are ejected from a nozzle at high speed towards a recording element or medium to produce an image on the medium. The ink droplets, or recording liquid, generally comprise a recording agent, such as a dye or pigment, and a large amount of solvent. The solvent, or carrier liquid, typically is made up of water, an organic material such as a monohydric alcohol, a polyhydric alcohol or mixtures thereof.
An ink jet recording element typically comprises a support having on at least one surface thereof an ink-receiving or image-forming layer, and includes those intended for reflection viewing, which have an opaque support, and those intended for viewing by transmitted light, which have a transparent support.
While a wide variety of different types of image-recording elements for use with ink jet devices have been proposed heretofore, there are many unsolved problems in the art and many deficiencies in the known products which have limited their commercial usefulness.
It is well known that in order to achieve and maintain photographic-quality images on such an image-recording element, an ink jet recording element must:
Be readily wetted so there is no puddling, i.e., coalescence of adjacent ink dots, which leads to non-uniform density
Bind dye with sufficient strength to minimize both water washout and high-humidity smearing
Exhibit no image bleeding
Exhibit the ability to absorb high concentrations of ink and dry quickly to avoid elements blocking together when stacked against subsequent prints or other surfaces
Exhibit no discontinuities or defects due to interactions between the support and/or layer(s), such as cracking, repellencies, comb lines and the like
Not allow unabsorbed dyes to aggregate at the free surface causing dye crystallization, which results in bloom or bronzing effects in the imaged areas
Have an optimized image fastness to avoid fade from contact with water or radiation by daylight, tungsten light, or fluorescent light
An ink jet recording element that simultaneously provides an almost instantaneous ink dry time and good image quality is desirable. However, given the wide range of ink compositions and ink volumes that a recording element needs to accommodate, these requirements of ink jet recording media are difficult to achieve simultaneously.
EPA 943 450 relates to an ink jet recording sheet containing a water-soluble divalent or greater metallic salt. However, there is no teaching of the advantages provided by first-row transition metal ions nor of their advantageous use with heterocyclic amine polymers.
Use of first-row transition metals in ink compositions for ink jet printers is disclosed in JP 59053562A, JP 59053565A, JP 59053566A, JP 59053567A and EPA 087544. However, there is no disclosure in these references of ink jet receiver elements containing these metal ion salts in combination with heterocyclic amine polymers.
It is an object of this invention to provide an ink jet printing method using a recording element that has good light stability for a dye image transferred to it. It is another object of this invention to provide an ink jet printing method using a recording element that provides good dye binding.
SUMMARY OF THE INVENTION
These and other objects are achieved in accordance with the invention which comprises an ink jet printing method, comprising the steps of:
A) providing an ink jet printer that is responsive to digital data signals;
B) loading the printer with an ink jet recording element comprising a substrate having thereon an image-receiving layer comprising a heterocyclic amine polymer, the image-receiving layer having associated therewith a water-soluble first-row transition metal ion salt;
C) loading the printer with an ink jet ink composition; and
D) printing on the ink jet recording element using the ink jet ink in response to the digital data signals.
Using the ink jet printing method of the invention, an ink jet recording element is obtained which provides good dye binding and improved light stability.
DETAILED DESCRIPTION OF THE INVENTION
The substrate used in the invention may be porous such as paper or nonporous such as resin-coated paper; synthetic paper, such as Teslin® or Tyvek®; an impregnated paper such as Duraform®; cellulose acetate or polyester films. The surface of the substrate may be treated in order to improve the adhesion of the image-receiving layer to the support. For example, the surface may be corona discharge treated prior to applying the image-receiving layer to the support. Alternatively, an under-coating or subbing layer, such as a layer formed from a halogenated phenol or a partially hydrolyzed vinyl chloride-vinyl acetate copolymer, can be applied to the surface of the support.
The heterocyclic amine polymer used in the invention can be, for example, poly(1-vinylimidazole), poly(4-vinylpyridine), poly(2-vinylpyridine), poly(styrene-co-1-vinylimidazole-co-3-hydroxyethyl-1-vinylimidazolium chloride) (5:4:1 mole ratio), poly(styrene-co-1-vinylimidazole-co-3-benzyl-1-vinylimidazolium chloride) (5:4:1 mole ratio), poly(styrene-co-1-vinylimidazole-co-3-hydroxyethyl-1-vinylimidazolium chloride) (2:2:1 mole ratio), poly(styrene-co-4-vinylpyridine-co-1-hydroxyethyl-4-vinylpyridinium chloride) (5:4:1 mole ratio), poly(1-vinylimidazole-co-3-hydroxyethyl-1-vinylimadazolium chloride)(9:1mole ratio) and poly(acrylonitrile-co-4-vinyl-1,2-methylenedioxybenzene-co-1-vinylimizazole-co-3-hydroxyethyl-1-vinylimadazolium chloride) (10:2:7:1 mole ratio). These heterocyclic amine polymers can serve as mordants that bind dyes and prevent wandering or smearing. The heterocyclic amine polymer may be coated at a level of from about 0.10 to 20.0 g/m
2
, or more typically from about 0.20 to 10.0 g/m
2
.
The water-soluble salts employed in this invention are comprised of the salts of metals of the first-row transition series of the periodic table of the elements, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn. Preferred first row transition metal ions include Zn
++
, Ni
++
, Cu
++
, Co
++
and Mn
++
. Zn
++
and Mn
++
are especially preferred where minimization of background color is important. Anions useful as components of the transition metal ion salts of this invention include chloride, sulfate, nitrate, acetate, phosphate and their hydrates, or any other anion that provides a water-soluble salt that does not interfere with the practice of this invention.
The metal ion salt employed in this invention is coated in the ink jet recording element at a level of from about 0.10 to 2.0 g/m
2
, and preferably from about 0.20 to 1.0 g/m
2
. On a molar basis the metal ion salt employed is coated in the ink jet recording element at a level of from about 0.0010 to 0.020 mole/m
2
.
The ink jet coating may be applied to one or both substrate surfaces through conventional pre-metered or post-metered coating methods such as blade, air knife, rod, roll coating, etc. The choice of coating process would be determined from the economics of the operation and in turn, would determine the formulation specifications such as coating solids, coating viscosity, and coating speed.
The image-receiving layer thickness may range from about 1 to about 60 &mgr;m, preferably from about 5 to about 40 &mgr;m.
The image-recording layer of the element used in the invention, can also contain a polymeric binder, e.g., a water soluble polymer such as poly(vinyl alcohol), gelatin, poly(vinyl pyrrolidone), poly(2-ethyl-2-oxazoline), poly(2-methyl-2-oxazoline), poly(acrylamide), Chitosan, methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, etc. Other binders can also be used such as low T
g
polymer latexes such as poly(styrene-co-butadiene), a polyurethane latex, a polyester
Merkel Paul B.
Wyble Patricia A.
Cole Harold E.
Eastman Kodak Company
Grendzynski Michael E.
Hess Bruce H.
LandOfFree
Ink jet printing method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ink jet printing method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ink jet printing method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2849365