Ink-jet printable vinyl films with improved curl properties

Incremental printing of symbolic information – Ink jet – Medium and processing means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S195100

Reexamination Certificate

active

06595632

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The invention relates to an ink-jet printable static cling film with improved curl properties which is applied on a support without the requirement of an adhesion layer to be used in advertising and graphic displays.
BACKGROUND OF THE INVENTION
For the purpose of advertising and graphic displays two kinds of polymer films are known. There are the self adhesive films with an adhesive coating. These films require a support provided with a release liner. In contrast, so-called static cling films have no adhesive coating. These films require the support to have a smooth surface and are applied using low pressure on the permanent support.
Polymer films for static cling films are typically PVC films (vinyl films) and are used for the decoration of windows, metal surfaces and other smooth objects. For the manufacture, transport, and storage of static cling films a support is required. Suited for this purpose are, for example, pigmented and unpigmented films or resin coated papers. The support must have a smooth surface in order to provide good adhesion to the vinyl film. However, the adhesion should not be to strong in order to avoid a deformation of the film during release of the film from the support.
A suitable support paper is coated with a pigment-containing layer and is dried by contact with a hot, highly glossy cylinder. This contact results in a support with a glossy surface. Further, extrusion coated papers are also appropriate for this purpose. The polymer which is to be extruded on the paper is most often a polyolefin. Treating the extrusion coated paper with a chill roll results in highly glossy surfaces.
U.S. Pat. No. 5,601,927 discloses a printable static cling material having a polypropylene film or a polyethylene-terephthalate film arranged between the so-called cling film and the recording layer. As an elastomeric material for the cling film a polymer on the basis of silicon or polyurethane is suggested. The support is a film of a resin coated paper. Disadvantageous with that material is the occurrence of curl resulting in a delamination from the permanent support. Other disadvantages include cost of applying the PET or PP layer as well as reduced transparency caused by the adhesive used in the capping operation.
SUMMARY OF THE INVENTION
It is the objective of the invention to provide a printable vinyl film having a low tendency towards the formation of curl, excellent aging resistance, and high image quality.
This objective is achieved with a static cling material comprising a paper coated with a thermoplastic resin, a vinyl film arranged on at least one surface of the coated paper and at least one curl avoiding polymer layer and a dye receiving layer. The curl avoiding layer itself shows a negative curl.
Said curl-avoiding polymer layer according to the invention provides a stiffness (100% modulus) according to ASTM D412-98 of from about 9 to about 34 MPa and a percent(%) elongation according to ASTM D2370-82 of about 250 to 400%.
DETAILED DESCRIPTION OF THE INVENTION
The stiffness (100% modulus) according to ASTM D412-98a required for the non-curling properties ranges from about 9 MPa to less than about 34 MPa, preferably 9.5 to 30 MPa. It should be considered that the given ranges may vary slightly in dependence of the temperature of the curl-avoiding layer.
The percent(%) elongation necessary for the compensation of curl in the material of the invention is about 250 to 400%, preferably 270 to 325% according to ASTM D2370-82. Accordingly, the percent elongation was determined by casting films of roughly 2 mils dry, air drying them, oven curing them 3 minutes at 300° F., equilibrating the films overnight at room conditions (about 70° F. and 50% RH), running 1″ wide films, using a jaw gap of either 1 inch (for high elongation films) or 2 inches (typical standard) and using an elongation rate of 2″ per minute.
Surprisingly, it was found that the acid number of the polymer used for the curl-avoiding layer has an important influence on the curl behavior. In the present invention the term acid number refers to the degree of substitution on the polymer chain, i.e. the number and lengths of the side chains present. The acid number may be greater than about 18, preferably more than about 20. The acid number may be determined according to ASTM D4662-98.
Finally, it was found that the viscosity of the polymer dispersion used for the preparation of the curl-avoiding layer does have a certain influence on the non-curling properties of this layer. For the purposes of the present invention the dynamic viscosity of said polymer dispersion should be 25 to 100 at 12 RPM, 25° C., LV-1.
It was found that certain kinds of polyurethane polymers are particularly preferred. These polymers are waterborne aliphatic polyurethanes. The aliphatic polyurethane may also be a cationic modified polyurethane resin. Particularly preferred is an aliphatic polyurethane the film of which provides a tensile strength of from 42 to 45 MPa, particularly about 44 MPa. The acid number of such a polymer is about 20 to 23. Preferably such a polymer is used in the form of a dispersion. The dispersion may preferably have a viscosity of about 95 to 105 cps. The solids content of the dispersion may amount to 32 to 38%, for example about 35% by weight.
To further control the adhesion or release properties of the vinyl film on which the curl-avoiding layer is applied pigments such as titanium dioxide, calcium carbonate, alumina and/or silica may be added to the polymer dispersion which forms said layer. The particle size of the pigments is in the range of about 0.1 to 1000 nm, preferably between 1 and 500 nm. The pigment which is particularly preferred is a colloidal silica. The pigment content in the layer should not be more than about 40% by weight, preferably in the range of about 5 to 20% by weight. For clear substrates, no pigment is added to the curl avoiding layer.
The curl-avoiding layer composition can be applied using all conventional coating and metering processes, such as roller coating, engraving or nip processes and air brushing or bleed knife metering. The coating weight may amount to about 4 to 20 g/m
2
, preferably 6 to 12 g/m
2
.
If a dye-receiving layer should be used its composition, may be a composition known in the art for this purpose. If a transparent substrate is used also the dye-receiving layer must be transparent. However, to support the curl-avoiding layer, the dye-receiving layer should provide similar properties as the curl-avoiding polymer layer, i.e. similar stiffness (100% modulus) and a similar elongation. Thus, the dye-receiving layer should provide a negative curl as does the curl-avoiding layer.
The dye receiving layer may be glossy, for example 60°, preferably more than 75° and most preferably more than 90°. The curl avoiding layer preferably should also be glossy.
The desired anti-curl properties could be controlled by adjusting the thickness of the curl-avoiding layer and the coating weight of the dye-receiving layer. According to a preferred embodiment of the invention the coating weight of the dye-receiving layer is selected to support the negative curl properties of the curl-avoiding polymer layer. Thus, the dye-receiving layer itself may have a negative curl. Most preferably, the coating weight should be kept at low values. For example, the coating weight of the dye-receiving layer could be to 3 to 20 g/m
2
, preferably 5 to 10 g/m
2
.
According to a further embodiment of the invention an ink-absorbing layer can be arranged between the dye-receiving layer and the support. The coating weight of the ink-absorbing layer may amount to 5 to 30 g/m
2
, preferably 7 to 12 g/m
2
. The ink-absorbing preferably has the same curl properties, clarity and gloss such as the curl-avoiding layer. Composition of the ink-absorbing layers are known in the art. They include a binder and pigments with high absorption capacities such as silica and alumina. The binder could be any binder used in the field of-ink-jet printing, such as polyvinylalco

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ink-jet printable vinyl films with improved curl properties does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ink-jet printable vinyl films with improved curl properties, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ink-jet printable vinyl films with improved curl properties will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3030820

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.