Ink container, valve unit, ink container manufacturing...

Incremental printing of symbolic information – Ink jet – Fluid or fluid source handling means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06719415

ABSTRACT:

FIELD OF THE INVENTION AND RELATED ART
The present invention relates to an ink container for an ink jet recording apparatus or the like, a valve unit for an ink container, a method for manufacturing an ink container, an ink jet head cartridge comprising an ink container, and an ink jet recording apparatus. In particular, it relates to an innovative ink container formed with the use of blow molding.
Among conventional ink jet recording apparatuses, some comprise a recording head which records on recording medium by ejecting ink, an ink container which contains ink to be supplied to the recording head, and an ink container holder as a portion which removably holds the ink container. The ink container holder also has the recording head. An ink jet recording apparatus capable of recording in color, that is, a color printer, comprises such an ink container holder that has a recording head for magenta color, a recording head for yellow color, a recording head for cyan color, and a recording head for black color, and is structured so that an ink container correspondent to each of the recording heads can be removably mounted in the ink container holder, to a position specified for each color.
There have been conceived various functions for preventing installation mistakes, so that an ink container correspondent to each of the plurality of recording heads is properly mounted to a position specified in the ink container holder in a color printer such as the one described above.
According to the first of such methods, the holder position specified for each of the different inks is labeled so that a user can visually confirm the correct holder position, or so that after ink container installation, any irregularity in ink container position is detected and a warning is displayed.
According to the second of such methods, each ink container, depending on the color of the ink it contains, is varied in the shape of the joint portion, at which each ink container is connected to the correspondent recording head as each ink container is mounted in the holder, so that installation mistakes are prevented.
According to the third of such methods, the external surface of each ink container is provided with a projection, the shape or structure of which is made different from those of the other ink containers different in ink color, and the ink container holder is provided with indentations or grooves in which the projections fit, and which are matched in shape or structure to the correspondent ink containers so that installation mistakes can be prevented.
In recent years, various advancements have been made in the field of an ink jet printer; it has become possible to print high quality images with the use of an ink jet printer, and also to use various types of ink. It has been known that the resistance of an image to water or friction can be improved by using two inks of different type so that the two inks solidify and fix to a sheet of recording medium by reacting to each other. Should an ink container be installed to a wrong position when this kind of method is employed, a recording head will be seriously damaged in function and the recorded images will be quite inferior. Thus, it is required that an ink container to be removably mounted in an ink container holder is provided with a highly precise and reliable identification structure, and also that the ink container is provided with a leak-proof ink outlet (with durability).
The above described conventional installation mistake prevention methods, however, had the possibility of suffering from problems. For example, in the case of the first example, an installation mistake was caught after the installation, and therefore, it was possible that inks were mixed and solidified, causing various problems: ink ejecting holes were plugged; ink failed to be ejected; a portion or portions of a printed image were missing; and a printer sustained various types of damage. In addition, it was possible that in the case of an apparatus which employs an exchangeable type ink container, ink containers were unnecessarily exchanged with fresh ones.
In the case of the second example, it did not occur that an ink container was installed all the way to a wrong position, but before an installation mistake was caught, the joint portions were placed in contact with each other. Therefore, it was also possible that the inks would mix and solidify, causing various problems, that is, ejection failure, printing of images with a missing portion or portions, and apparatus breakage. Also in this case, there was a possibility that in the case of an apparatus which employs an exchangeable type ink container, ink containers were unnecessarily exchanged with fresh ones.
In the case of the third example, an installation mistake was physically prevented, which reduced the possibility of ink mixture such as the one described above. However, the ink container shape was complicated, in particular, when an ink container provided with an identification structure was formed in a single piece. Therefore, there were problems that the ink container cost was high, and also that an ink container was limited in terms of material.
Various publications, in particular, EP0738605, disclose an ink container which is formed by blow molding. This ink container comprises a hard external shell in the form of an approximately polygonal prism, and a liquid holding portion (hereinafter, it may be referred to as “internal bladder”) which holds liquid therein. When the liquid holding portion is full, it is virtually identical, or very similar, in shape to the internal space of the shell. It changes in shape as the liquid therein is drawn out. Hereinafter, this type of an ink container may be referred to as multilayer container. As described in the aforementioned publications, it is excellent in terms of ink storage ratio, and also the ink usage ratio. However, there is a possibility that various problems will occur as its shape becomes complicated.
To begin with, it is generally difficult to form a highly precise object with the use of blow molding; it is difficult to form a precise and reliable identification structure on an ink container.
Further, as the ink is drawn out of the ink holding portion of the aforementioned ink container, the ink holding portion must properly shrink so that the liquid is supplied out of the ink holding portion while generating negative pressure therein. The shape of the internal bladder corresponds to the shape of the ink container external shell, and therefore, if the shell shape is complicated because of the presence of the irregularities on the surface of the shell, it is difficult for the internal bladder to deform as the ink is drawn out, and if the internal bladder fails to properly deform, the ink fails to be reliably supplied. In other words, there is a possibility that the ink cannot be reliably supplied from an ink container such as the aforementioned one, and in the case that the shell shape is more complicated, there is a possibility that pin holes may develop in the wall of the internal bladder.
On the other hand, it is desired that in the case of an ink jet head cartridge structured so that ink containers can be removably connected to the recording head portion of the ink jet head cartridge as described above, the joint portion between the ink container and the recording head portion, to which the liquid in an ink container is supplied, simultaneously satisfies at least the following requirements.
One of the requirements is that when an ink storing (or accommodating) container or is connected to, or separated from, to a component to which ink is to be supplied, ink does not leak from the joint portion regardless of the attitude of the ink storing container. Another of the requirements is that the ink can be steadily supplied after the completion of the connection. An additional requirement, which is necessary in consideration of the possibility that some users may repeat the processes of connecting and separating, is that the preceding two requirements, which must be

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ink container, valve unit, ink container manufacturing... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ink container, valve unit, ink container manufacturing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ink container, valve unit, ink container manufacturing... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3193830

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.