Incremental printing of symbolic information – Ink jet – Fluid or fluid source handling means
Reexamination Certificate
2002-08-01
2004-05-25
Meier, Stephen D. (Department: 2853)
Incremental printing of symbolic information
Ink jet
Fluid or fluid source handling means
C347S096000, C106S031130, C106S031270, C523S160000
Reexamination Certificate
active
06739715
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an ink composition for ink jet recording containing an azo dye, an ink jet recording method, a composition for color toner, and a composition for a color filter.
2. Description of the Related Art
Recently, materials for forming color images in particular are mainly used as image recording materials. Specifically, recording materials for ink jet recording, recording materials for electrophotography, silver halide photosensitive materials for a transfer method, printing inks, recording pens, and the like are often used. Further, color filters are used for imaging elements such as CCDs in photographing equipment or for displays such as LCDs and PDPs in order to record or reproduce color images.
In order to reproduce or record full-color images, dyes and pigments of the so-called three additive colors or three subtractive colors are used for the color image recording materials or color filters. However, in the present situation, dyes and pigments which have such absorption property that a preferable color reproduction range can be realized and which are fast enough to tolerate various operating conditions and environmental conditions have not been provided. Therefore, improvement of dyes and pigments has been strongly demanded.
Ink jet recording methods have spread rapidly and are developing further since they enable low material cost, high-speed recording, low noise during recording, and simple color recording.
Examples of the ink jet recording methods include a continuous method, in which droplets are made to fly continuously, and an on-demand method, in which droplets are made to fly in accordance with image information signals. In these methods, droplets are discharged by: applying pressure using piezo elements; using heat to generate air bubbles in ink; using ultrasonic wave; or being attracted by electrostatic force. Further, water-based inks, oil-based inks, or solid (melting type) inks are used as inks for ink jet recording.
Dyes or pigments used in such inks for ink jet recording need to: have good solubility for or dispersibility in a solvent; enable high density recording; have good hue; have fastness to light, heat, and active gas in an environment (e.g., oxidizing gas such as NO
x
and ozone, and others such as SO
x
); have excellent fastness to water and chemicals; exhibit good fixing on image receiving materials and hardly cause bleeding; have excellent preservation as inks; have no toxicity; have high purity; and be available at low cost. However, it is extremely difficult to seek for dyes or pigments which satisfy these demands at a high level. In particular, there is a strong demand for dyes or pigments that have good yellow hue and are fast to light, moisture, and for those which are fast to oxidizing gas in an environment such as ozone when printing is carried out on an image receiving material which has an ink receiving layer containing white and porous inorganic pigment particles.
Generally, toner in which a coloring material is dispersed in resin particles is widely used in electrophotographic color copiers or electrophotographic color laser printers. Examples of properties required for the toner include absorption property, with which a preferable color reproduction range can be realized, high transmittance (transparency), which is particularly required when the toner is used for overhead projectors (hereinafter referred to as “OHPs”), and fastness under environmental conditions used. Japanese Patent Application Laid-Open (JP-A) Nos. 62-157051, 62-255956, and 6-118715 respectively disclose toner in which a pigment is dispersed in resin particles as a coloring material. However, although these toners have excellent light resistance, they are insoluble and thus easily flocculate, thereby causing problems of deterioration in transparency or changes in the hue of a transmission color. JP-A Nos. 3-276161, 7-209912, and 8-123085 respectively disclose toner in which a dye is used as a coloring material. Although these toners have high transparency and cause no changes in the hue, they have a problem in terms of light resistance.
Since it is necessary for color filters to be highly transparent, they have been produced by a method in which a filter is dyed with a dye. For example, a color filter can be manufactured by exposing and developing a photoresist to be dyed to thereby form a pattern, dying the pattern using a dye for the filter color, and then repeating this process for all filter colors. The color filter can also be manufactured by methods other than the dying method, such as methods disclosed in U.S. Pat. No. 4,808,501 and JP-A No. 6-35182 which use a positive photoresist. Since these methods use a dye, transmittance is high and optical characteristics of the color filter are excellent. However, there is a limit to resistance to light and heat, and therefore, a dye having excellent resistance and high transparency has been demanded. A method which uses an organic pigment having excellent resistance to light and heat instead of a dye has been widely known. However, it has been difficult for a pigment-containing color filter to obtain such optical characteristics as those obtained by a dye-containing color filter.
The dyes to be used in various applications as described above need to have the following characteristics in common: preferable absorption property in view of color reproduction; fastness under environmental conditions used; resistance to light, heat, moisture, and oxidizing gas such as ozone; good fastness to chemicals such as sulfurous acid gas; and a large molar absorption coefficient.
Azo dyes have been conventionally used as yellow dyes. Although a pyridone azo dye disclosed in JP-A No. 6-184481 is known as an azo dye of good hue, this dye has a problem of poor lightfastness. Further, the dye has extremely poor fastness to oxidizing gas such as ozone. The present inventors have studied a dye which is fast to light and oxidizing gas such as ozone and have found, as a result, that a hetero—hetero azo dye, particularly a thiadiazolyl-azo-pyrazole yellow dye is favorable. Although JP-A No. 2-24191 and the like are known as the applications relating to the thiaziazolyl-azo-pyrazole yellow dyes, they do not disclose the use of the dyes for inks for ink jet recording. Further, the applications do not disclose that these dyes are fast to oxidizing gas such as ozone, and the dyes are not sufficiently soluble in solvents and thus are not preferable as oil-soluble dyes.
SUMMARY OF THE INVENTION
An object of the present invention is to solve the conventional problems described above and achieve the following purposes: (1) to provide various color compositions which provide color images and color materials having excellent hue and fastness and are used for an ink for ink jet printing, color toner for electrophotography, and a color filter used in a display such as a LCD or a PDP, and in an imaging element such as a CCD; and (2) to provide an ink jet recording method which can form, using the color composition, an image having good hue and high fastness to light and active gas in an environment, particularly ozone.
The inventors achieved the present invention after learning, as a result of intensive studies on azo dye derivatives for the purpose of obtaining a dye having good hue, high fastness to light and ozone, and high solubility, that the above problems can be solved by a dye represented by the following General Formula (1).
A first aspect of the present invention is an ink composition for ink jet recording containing at least one dye represented by the following General Formula (1):
General Formula (1)
A—N═N—B
wherein A and B independently represent a heterocyclic group which may be substituted; at least one of A and B includes an alkyl chain having at least 4 carbon atoms; and no ionic hydrophilic group is included.
A second aspect of the present invention is an ink jet recording method, in which an image is formed on an image receiving material comprising
Harada Toru
Nishita Nobuhiro
Burns Doane , Swecker, Mathis LLP
Fuji Photo Film Co. , Ltd.
Meier Stephen D.
Shah Manish
LandOfFree
Ink composition for ink jet recording, ink jet recording... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ink composition for ink jet recording, ink jet recording..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ink composition for ink jet recording, ink jet recording... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3270752