Incremental printing of symbolic information – Ink jet – Fluid or fluid source handling means
Reexamination Certificate
2000-03-15
2002-11-05
Nguyen, Thinh (Department: 2861)
Incremental printing of symbolic information
Ink jet
Fluid or fluid source handling means
Reexamination Certificate
active
06474799
ABSTRACT:
BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates to an ink cartridge containing a plural number of inks, and a printing device using the ink cartridge.
A color printer of the type in which inks of different colors are ejected from a head has prevailed for an output device of a computer. In printing a multi-color image by using three color inks of cyan, magenta and yellow (C, M, Y), some methods are available for the formation of a multi-tone image. One method is employed for the conventional printers. In this method, the size of a dot formed on a sheet of paper by an ink droplet or droplet ejected at once is fixed, and a tone of an image to be printed is expressed in terms of a density of dots (frequency of occurrence of dots per unit area). In another method, a density of an image per unit area is varied by adjusting the diameters of dots printed on the paper. Recently, a fine fabrication technique to fabricate a head for ejecting ink droplets advances, and a density of dots that can be formed within a given length and a range within which the dot diameter may be varied are increased and broadened year by year. However, in the field of printers, a print density (resolution) is at most 300 dpi to 720 dpi, and the diameter of ink droplets is in the order of several tens microns. These figures show that an expression ability of the printer is much inferior to that of a silver-salt photograph (its resolution is several tens dpi on the film).
In a region where an image density is low or a density of dots to be printed is low, dots are sparsely formed (called grained), and this is unpleasant to the eye. To cope with this, a printing device using light and deep color inks and a printing method using the same were proposed. In the proposal, inks of high and low color densities are used for each color, and the ejection of those inks are controlled, whereby a print excellent in tone expression is realized. A recording method for recording a multi-tone image and a device for executing the method are disclosed in Japanese Patent Laid-Open Publication No. Sho. 61-108254. In the publication, a head for forming light and deep color dots for each color is provided. The number of light and deep dots formed within a given dot matrix and an overlapping of those dots are controlled in accordance with density information of an input image, whereby a multi-tone image is recorded.
A plural number of inks must be used for realizing the multi-color printing or multi-tone image printing. Those inks may be supplied from a plural number of ink tanks, respectively. In this case, the amounts of inks left in the tanks must be managed individually, and the piping from the ink tanks to the print head is complicated. To avoid those, the plural number of inks are stored in a single ink cartridge.
In the printing device using the plural number of inks, unsatisfactory study has been made on the proper iamounts of the inks contained in the ink cartridge. Recently, to an easy handling, a plural number of inks are stored in a single ink cartridge, and those inks are all replaced with new ones. In this method, when any of the inks is used up, the whole cartridge is replaced with a new one. Thus, unless the amounts of light and deep color inks for each color contained in the ink cartridge are properly determined, the inks other than the ink completely used up must be discarded, and this is wasteful. Accordingly, an object of the present invention is to obtain a proper relationship among the amounts of inks contained in the ink chambers of an ink cartridge.
Where the different amounts of inks are stored in the ink chambers of the ink cartridge, the ink chambers are also different in size, usually, and various problems arise. If the volumes of the ink chambers differ every ink, great difficulties arise in the design of the print head, usually, disposed right under the ink chambers, as well as its printing control. The difficulties will be described in detail. In a printer in which a print head is integrally mounted on a carriage on which an ink cartridge is put, an image is printed while moving the carriage in the widthwise direction of the paper (referred to a main scan direction). It is supposed that at least three ink chambers are arrayed on the ink cartridge in the main scan direction, and printing-nozzles are located right under the ink chambers. If the widths (in the main scan direction) of the ink chambers are different with the different volumes of the ink chambers, the nozzle intervals are also different. If a plural number of ink droplets are applied to a position on the paper to form a dot thereat while moving the carriage, it is necessary to individually control the timings of forming the ink droplets for each ink.
In a case where a plural number of inks are stored in a single ink cartridge, when the cartridge is set to the carriage, a plural number of ink supply needles are concurrently inserted into the ink cartridge. This makes it difficult to secure a sufficient sealing at the time of inserting the needles. A plural number of ink supply ports must be provided within a limited space in association with the plural number of ink chambers. Therefore, it is difficult to secure a sufficient deflection of the sealing means, which is mounted on the ink supply ports, in the diameter direction. Accordingly, a slight position shift that may occur at the time of mounting the ink cartridge will deteriorate the sealing performance or damage the ink supply needles. In a case where the different volumes of the ink chambers entails the unequal intervals among the ink supply ports, the sealing problem is more distinguished when comparing with the case where the ink supply ports are equidistantly arrayed. When the intervals among the ink supply ports are different, and as a result, the intervals among the ink supply needles or the intervals among the ink supply ports are varied, strain is frequently concentrated at specific locations.
Accordingly, another object of the present invention is to secure sufficient sealing at the ink supply ports of the ink cartridge including a plural number of ink chambers.
An ink cartridge is invented to achieve at least part of the objects. A printing device using the ink cartridge is invented. The ink cartridge and the printing device of the invention will be described hereunder.
A first ink cartridge of the invention is an ink cartridge containing inks for printer wherein at least three ink chambers for containing inks are formed by partitioning the inner space of the ink cartridge, the volume of one ink chamber being different from the volumes of the remaining ones, and ink supply ports communicatively connected to the ink chambers by way of ink passages are arrayed on the bottom of a main body of the ink cartridge in association with the ink chambers, respectively.
The ink cartridge is provided with at least three ink chambers for containing different inks, and the volume of one ink chamber is different from the volumes of the remaining ones. Ink supply ports communicatively connected to the ink chambers by way of ink passages are arrayed on the bottom of a main body of the ink cartridge in association with the ink chambers, respectively. The ink cartridge has an advantage of an easy ink supply although its structure includes the ink chambers of the different volumes containing a plural number of inks.
The unique feature of the ink supply ports being equidistantly arrayed in a given direction, is very useful in the print head control. Specifically, if the ink supply ports are equidistantly arrayed, the ink ejecting positions are also equidistantly spaced from one another, usually. Accordingly, the control of the timings of ink ejection is also easy.
In the ink cartridge, the ink chambers of three or more are arranged in the direction of transporting the ink cartridge, the difference of the volume of the one ink chamber from those of the remaining ones is realized by the width difference of the one ink chamber, and the given direction in which the ink su
Kobayashi Takao
Miyazawa Hisashi
Shimada Kazumichi
Nguyen Thinh
Seiko Epson Corporation
Stroock & Stroock & Lavan LLP
LandOfFree
Ink cartridge and a printing device using the ink cartridge does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ink cartridge and a printing device using the ink cartridge, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ink cartridge and a printing device using the ink cartridge will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2970650