Injector for molten metal supply system

Metal founding – Process – Shaping liquid metal against a forming surface

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C164S312000, C164S337000, C164S133000, C222S590000, C222S594000, C222S596000

Reexamination Certificate

active

06708752

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a molten metal injector and, more particularly, a molten metal injector for use with a molten metal supply system and method of operating the same.
2. Description of the Prior Art
The metal working process known as extrusion involves pressing metal stock (ingot or billet) through a die opening having a predetermined configuration in order to form a shape having a longer length and a substantially constant cross-section. For example, in the extrusion of aluminum alloys, the aluminum stock is preheated to the proper extrusion temperature. The aluminum stock is then placed into a heated cylinder. The cylinder utilized in the extrusion process has a die opening at one end of the desired shape and a reciprocal piston or ram having approximately the same cross-sectional dimensions as the bore of the cylinder. This piston or ram moves against the aluminum stock to compress the aluminum stock. The opening in the die is the path of least resistance for the aluminum stock under pressure. The aluminum stock deforms and flows through the die opening to produce an extruded product having the same cross-sectional shape as the die opening.
Referring to
FIG. 1
, the foregoing described extrusion process is identified by reference numeral
10
, and typically consists of several discreet and discontinuous operations including: melting
20
, casting
30
, homogenizing
40
, optionally sawing
50
, reheating
60
, and, finally, extrusion
70
. The aluminum stock is cast at an elevated temperature and typically cooled to room temperature. Because the aluminum stock is cast, there is a certain amount of inhomogeneity in the structure and the aluminum stock is heated to homogenize the cast metal. Following the homogenization step, the aluminum stock is cooled to room temperature. After cooling, the homogenized aluminum stock is reheated in a furnace to an elevated temperature called the preheat temperature. Those skilled in the art will appreciate that the preheat temperature is generally the same for each billet that is to be extruded in a series of billets and is based on experience. After the aluminum stock has reached the preheat temperature, it is ready to be placed in an extrusion press and extruded.
All of the foregoing steps relate to practices that are well known to those skilled in the art of casting and extruding. Each of the foregoing steps is related to metallurgical control of the metal to be extruded. These steps are very cost intensive, with energy costs incurring each time the metal stock is reheated from room temperature. There are also in-process recovery costs associated with the need to trim the metal stock, labor costs associated with process inventory, and capital and operational costs for the extrusion equipment.
Attempts have been made in the prior art to design an extrusion apparatus that will operate directly with molten metal. U.S. Pat. No. 3,328,994 to Lindemann discloses one such example. The Lindemann patent discloses an apparatus for extruding metal through an extrusion nozzle to form a solid rod. The apparatus includes a container for containing a supply of molten metal and an extrusion die (i.e., extrusion nozzle) located at the outlet of the container. A conduit leads from a bottom opening of the container to the extrusion nozzle. A heated chamber is located in the conduit leading from the bottom opening of the container to the extrusion nozzle and is used to heat the molten metal passing to the extrusion nozzle. A cooling chamber surrounds the extrusion nozzle to cool and solidify the molten metal as it passes therethrough. The container is pressurized to force the molten metal contained in the container through the outlet conduit, heated chamber and, ultimately, the extrusion nozzle.
U.S. Pat. No. 4,075,881 to Kreidler discloses a method and device for making rods, tubes, and profiled articles directly from molten metal by extrusion through use of a forming tool and die. The molten metal is charged into a receiving compartment of the device in successive batches that are cooled so as to be transformed into a thermal-plastic condition. The successive batches build up layer by layer to form a bar or other similar article.
U.S. Pat. Nos. 4,774,997 and 4,718,476 both to Eibe disclose an apparatus and method for continuous extrusion casting of molten metal. In the apparatus disclosed by the Eibe patents, molten metal is contained in a pressure vessel that may be pressurized with air or an inert gas such as argon. When the pressure vessel is pressurized, the molten metal contained therein is forced through an extrusion die assembly. The extrusion die assembly includes a mold that is in fluid communication with a downstream sizing die. Spray nozzles are positioned to spray water on the outside of the mold to cool and solidify the molten metal passing therethrough. The cooled and solidified metal is then forced through the sizing die. Upon exiting the sizing die, the extruded metal in the form of a metal strip is passed between a pair of pinch rolls and further cooled before being wound on a coiler.
In view of the foregoing, an object of the present invention is to provide an injector that is configured to operate directly with molten metal and may be used as part of a molten metal supply system for supplying molten metal to downstream metalworking or forming processes. A further object of the present invention is to provide an injector having the benefit of greatly reduced wear between its moving parts and the ability to generate relatively high working pressures with correspondingly small amounts of stored energy.
SUMMARY OF THE INVENTION
The foregoing objects are accomplished with an injector for a molten metal supply system and method of operating the same in accordance with the present invention. The injector includes an injector housing configured to contain molten metal. A molten metal supply source is in fluid communication with the housing. A piston is reciprocally operable within the housing. The piston is movable through a return stroke allowing molten metal to be received into the housing from the molten metal supply source, and a displacement stroke for displacing the molten metal from the housing to a downstream process. The piston has a pistonhead for displacing the molten metal from the housing. A gas supply source is in fluid communication with the housing through a gas control valve. The injector is operable such that during the return stroke of the piston a space is formed between the pistonhead and the molten metal and the gas control valve is operable to fill the space with gas from the gas supply source. The injector is further operable such that during the displacement stroke of the piston the gas control valve is operable to prevent venting of gas from the gas filled space such that the gas in the gas filled space is compressed between the pistonhead and molten metal received into the housing and displaces the molten metal from the housing ahead of the pistonhead.
The piston may include a piston rod having a first end and a second end. The first end may be connected to the pistonhead and the second end may connected to an actuator for driving the piston through the return stroke and the displacement stroke. The second end of the piston may be connected to the actuator by a self-aligning coupling. An annular pressure seal may be located about the piston rod to provide a substantially gas tight seal between the piston rod and the housing. A cooling water jacket may be positioned about the housing substantially coincident with the pressure seal for cooling the pressure seal. The first end of the piston rod may be connected to the pistonhead by a thermal insulation barrier. The piston rod may define a central bore that is in fluid communication with a cooling water inlet and outlet for supplying cooling water to the central bore in the piston rod.
The housing and piston rod may be made of high temperature resistant metal alloy. The pistonhead may be made of high t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Injector for molten metal supply system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Injector for molten metal supply system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Injector for molten metal supply system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3275542

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.