Injection mould

Plastic article or earthenware shaping or treating: apparatus – With means adjusting synchronization or compensating for wear

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C425S810000, C065S374150

Reexamination Certificate

active

06238197

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to an injection mould, for instance for manufacturing disc-like information carriers or plastic lenses.
2. Description of the Prior Art
In moulds for the production of optical information carriers an insert disc or stamper is arranged in the mould. This stamper carries a mechanical pattern which corresponds with the information for arranging on the information carrier to be manufactured. The stamper is arranged against a hardened steel insert piece, often designated as a mirror, and often held by means of a vacuum. The stamper is manufactured by means of an electro-deposition process and usually consists substantially of nickel. For manufacturing a CD the stamper has a diameter of 138 mm and a thickness of 0.3 mm.
During injection moulding in the mould, heated plastic, generally polycarbonate that is plasticized under high pressure, is injected against the stamper when the mould is closed. The injection pressure of the plastic is locally 1500 bar, wherein the temperature of the plasticized plastic is about 320° C.
The stamper placed in the mould is not wholly flat and will be pressed against the mirror under the influence of the high injection pressure. The hot plastic will also cause the stamper, which normally has a temperature of 60° C., to expand. This combination of pressure and expansion ensures that the stamper slides with micro-movements over the highly polished mirror surface. These micro-movements cause so-called cold weld between the hardened mirror surface and the stamper. Owing to this cold weld a connection occurs wherein the nickel adheres to the steel of the mirror. In practice this results after about 500,000 cycles in a mirror surface which is no longer wholly flat and therefore no longer capable of transferring the information structures from the stamper to the plastic information carrier. The result is deformation of this information, which results in rejection of the information carrier.
A known solution for this problem of pit deformation by cold weld is to provide the mirror surface with a thin coating of several micrometers. This known coating consists of TiN and is arranged by means of “Physical Vapour Deposition” or PVD. In respect of a correct pit formation this coating must be of optical quality without the occurrence of local build-up of so-called droplets (large peaks due to droplet formation). These droplets penetrate into the stamper and cause pit deformation. The result of this known coating is in practice as follows:
Reduction of the cold weld. With the coating about 3,000,000 cycles can be performed with a mirror before pit deformation occurs. This means that the lifespan of the mirror is increased by a factor of 6.
Dirt can be cleaned from the mirror surface more easily.
The mirror surface can be cleaned more easily when nickel is deposited thereon.
A harder and more scratch-resistant surface owing to the use of the coating, so that damage, for instance during cleaning, occurs less quickly, which contributes to a longer lifespan.
Less rejection of manufactured information carriers in that the surface of the mirror is contaminated less rapidly with nickel and pit deformation thereby occurs later.
The TiN coating has resulted in a number of advantages relative to a mirror without coating. There are however still a number of drawbacks which can be mentioned which stand in the way of a higher quality of the manufactured information carrier. Some of these drawbacks are the following:
For applying of the coating a high process temperature is required, i.e. 480° C. This may cause a change in shape due to the residual austenite conversion in the hardened steel of the mirror.
Cold weld is still found to occur despite the fact that a substantial improvement in standing time is realized.
A coefficient of friction of the TiN coating in a lubricant-free situation which is roughly equal to that of steel, i.e. 0.5. It is therefore still not easily possible for the stamper to slide over the mirror surface counter to the pressure of the plastic and possibly counter to the pressure of a resilient venting ring. This causes a certain degree of bulging of the stamper which results in pit deformation, particularly on the outer edge of the information carrier. This phenomenon is further enhanced in the production of a Digital Versatile Disc or DVD, wherein the track pitch is 0.8 micrometer compared to a Compact Disc or CD with a track pitch of 0.6 micrometer.
Attention is focussed in the foregoing on a mould with stamper. Use is however also made of moulds wherein the information for transferring onto the information carrier to be manufactured is arranged directly onto the relevant surface, the mirror. This mirror has an optical polished surface which is very sensitive to scratching which occurs mainly during cleaning. Due to human carelessness the mirror can become unusable due to damage during the first cleaning. During production deposits on this surface which consist of impurities such as dust and dirt and precipitation of for instance additives which evaporate out of the injected plastic. Residual particles of the plastic can become fixed on the outer periphery which result from burr-formation between the moving venting ring and the mirror.
Frictional resistance between the plastic flowing past and the mirror surface causes stress in the produced disc which has an adverse effect on the crystal-clear character of the disc and results in an undesired diffusion of the scanning laser beam during reading of the information on this information carrier.
There is the further phenomenon of cold weld between the mirror and the resilient venting ring shifting therealong. This causes damage both to the mirror and to the venting ring due to deformation of the surface of the slide fitting of both components.
The different mutually movable components of a mould are subject to mutually differing temperatures, which may change in value during successive production cycles. In respect of the necessary very small gap widths, thermal expansion of the different mould parts involved may cause problems. A mould often even has to be designed with undesirably large clearances between diverse components since, in respect of the limited possibilities of temperature control, there is otherwise the danger of a mould jamming. This problem occurs for instance in the case of a for instance resiliently disposed venting ring which is relatively shiftable co-axially and with very slight clearance relative to the mould part around which it is arranged.
This problem generally occurs in the case of a very small gap width in the transition zone between two mould components in the immediate vicinity of the mould cavity.
In respect of the above formulated problems, the invention has for its object to embody an injection mould such that it is essentially free from the described drawbacks.
SUMMARY OF THE INVENTION
In this respect the invention provides an injection mould for manufacturing disc-like information carriers, which mould comprises:
two mould parts mutually movable between a closed and an open position, which mould parts bound in closed position a mould cavity into which in the closed position heated plasticized plastic can be injected by means of supply means, wherein one flat end surface of the mould cavity carries a mechanical pattern either directly or via an insert disc consisting predominantly of nickel, which pattern corresponds with the information for arranging on the information carrier to be manufactured,
wherein the one mould part has a cylindrical inner surface partly bounding the mould cavity and the other mould part has a cylindrical outer surface, which cylindrical surfaces can slide over each other, wherein at least one of these surfaces can form part of an optionally resilient venting ring,
wherein at least the surfaces bounding the mould cavity and said cylindrical surfaces consist of steel,
wherein at least a part of said surfaces is provided with a coating which does not consist of TiN and which

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Injection mould does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Injection mould, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Injection mould will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2488448

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.