Injection molding apparatus with bleed off pocket for...

Plastic and nonmetallic article shaping or treating: processes – Forming electrical articles by shaping electroconductive... – Conductive carbon containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S271100, C264S275000, C264S277000, C425S123000, C425S812000

Reexamination Certificate

active

06540948

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to the cooling of heat generating surfaces and objects. More specifically, the present invention relates to a method of manufacturing a heat pipe construction for dissipating heat generated by such objects. In addition, the present invention relates to cooling of heat generating objects passively by use of a phase-change media within a heat pipe construction without the use of external fans or devices to assist in cooling.
In industry, there are various parts and components that generate heat during operation. For example, in the electronics and computer industries, it is well known that computer components generate heat during operation. Various types of electronic device packages and integrated circuit chips, such as the PENTIUM central processing unit chip (CPU) manufactured by Intel Corporation and RAM (random access memory) chips are such devices that generate heat. These integrated circuit devices, particularly the CPU microprocessor chips, generate a great deal of heat during operation which must be removed to prevent adverse effects on operation of the system into which the device is installed. For example, a PENTIUM microprocessor, containing millions of transistors, is highly susceptible to overheating which could destroy the microprocessor device itself or other components proximal to the microprocessor.
There are a number of prior art methods to cool heat generating components and objects to avoid device failure and overheating, as discussed above. A block heat sink or heat spreader is commonly placed into communication with the heat generating surface of the object to dissipate the heat therefrom. Such a heat sink typically includes a base member with a number of individual cooling members, such as fins, posts or pins, to assist in the dissipation of heat. The geometry of the cooling members is design to improve the surface area of the heat sink with the ambient air for optimal heat dissipation. The use of such fins, posts of pins in an optimal geometrical configuration greatly enhances heat dissipation compared to devices with no such additional cooling members, such as a flat heat spreader.
To further enhance air flow and resultant heat dissipation, fans and devices have been used, either internally or externally. However, these external devices consume power and have numerous moving parts. As a result, heat sink assemblies with active devices are subject to failure and are much less reliable than a device which is solely passive in nature.
It has been discovered that more efficient cooling of electronics can be obtained through the use of passive heat pipes which require no external power source and contain no moving parts. Generally, the heat pipe is in the form a vacuum-tight vessel in a particular geometric shape which is evacuated and partially filled with a working fluid. The heat pipe passively transfers heat from a heat source to a heat sink where heat is dissipated. As the heat is conducted into the heat pipe, the fluid is vaporized in an evaporator section creating a pressure gradient in the heat pipe. This forces the vapor to flow along the heat pipe to the condenser section, where the vaporized fluid is condensed and turned back to its fluid state by giving up its latent heat of vaporization. The working fluid is then returned to the evaporator section to repeat the process of removing the heat generated by the heat source. One method used to achieve cooling by use of a heat pipe places the evaporator section at the lower end and the condenser section at the upper end where the heat pipe is in a substantially vertical position. Once the working fluid has been condensed, the liquid flows by gravity back to the evaporator section. Internal wick structures may be used to assist liquid flow back to the evaporator section by capillary action to reduce the effect of gravity on the device.
Alternatively, the heat pipe may be simply filled with the working fluid to create a vapor chamber therein when the liquid is heated by the heat generating object. It is well known in the prior art that vaporized water or ammonia is highly thermally conductive and greatly facilitates the transfer of heat.
Heat pipes alone are known devices for use in dissipating heat from a heat generating object. However, heat pipes are typically tubular in configuration and do not interface well with objects to be cooled. Further, heat pipes, due to their tubular configuration, do not interface well with the ambient air for dissipation of heat. For example, a typical heat pipe may only be a few centimeters in diameter while the object to be cooled may be a microprocessor which is two inches square in shape. As a result, the affixation of such a heat pipe to a microprocessor results in a very inefficient transfer of heat from such a large heat generating surface to a small surface area about one side of the diameter of a heat pipe. Further, the exposure of the free end, not connected to a heat generating object, to the ambient air is also inefficient because the surface area of the diameter of the heat pipe is relatively small thus making the dissipation of heat even more inefficient.
While is desirable to cast a heat sink assembly or overmold a thermally conductive configuration about a heat pipe, there is a serious risk of damage to the heat pipe during the casting or molding process. If the tubular pipe is cracked or split during formation of the heat sink configuration, the heat pipe media will leak and the heat pipe will not operate properly resulting in a deleterious effect on the thermal conductivity of the overall heat dissipation device. In the prior art, heat pipes are well-known devices for moving heat from one place to another. In particular, a heat pipe is typically an enclosed tube with a volume of water or ammonia therein. A first end of the heat pipe is placed in communication with a heat generating object, such as a microprocessor chip that runs hot. The media (water or ammonia) turns into a gas when in communication with heat that is of a sufficient temperature which causes the vapor to travel to the opposite end of the heat pipe thus transferring heat along with it.
It is highly desirable to embed a heat pipe within a thermally conductive moldable composition to further enhance the overall thermal performance of the heat pipe. For example, it is highly desirable to overmold a thermally conductive material with a number of pins or fins, or other heat dissipating elements. These additional heat dissipating elements improve the overall thermal conductivity of the heat pipe because the outer geometry is now improved to better dissipate heat when in communication with the air.
In view of the prior art, an improved method of overmolding a heat pipe to provide complex geometries would be desirable to improve the overall heat dissipating qualities of the heat pipe. A method for relieving pressure during the overmolding of a delicate heat pipe construction is highly desirable to prevent damage to the heat pipe. In view of the foregoing, there is a demand for a heat pipe construction and a method for manufacturing such a construction that is less expensive than the prior art yet provides superior heat dissipation. There is a demand for a passive heat pipe construction with no moving parts that can provide heat dissipation without the use of active components. In addition, there is a demand for a method of manufacturing a heat pipe construction that enables additional heat dissipating material to be cast or mold around a heat pipe without risk of damage to the heat pipe itself.
SUMMARY OF THE INVENTION
The present invention preserves the advantages of prior art heat dissipation, heat exchanger devices and heat pipes. In addition, it provides new advantages not found in currently available devices and overcomes many disadvantages of such currently available devices.
The invention is generally directed to a method of overmolding a heat pipe that includes providing an injection mold apparatus having a cavity, an in

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Injection molding apparatus with bleed off pocket for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Injection molding apparatus with bleed off pocket for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Injection molding apparatus with bleed off pocket for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3001791

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.