Miscellaneous active electrical nonlinear devices – circuits – and – Signal converting – shaping – or generating – Having specific delay in producing output waveform
Reexamination Certificate
1999-07-15
2001-11-20
Callahan, Timothy P. (Department: 2816)
Miscellaneous active electrical nonlinear devices, circuits, and
Signal converting, shaping, or generating
Having specific delay in producing output waveform
C327S276000, C327S278000
Reexamination Certificate
active
06320444
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to an oscillator. More specifically, an initial phase control of an oscillator with low disturbance to high speed signal path is disclosed.
2. Description of Related Art
A phase-locked loop (PLL) generally comprises a phase detector, a low-pass filter, and a voltage-controlled oscillator (VCO). The VCO is an oscillator that produces a periodic wave form as an output signal, the frequency of which may be varied about some free-running frequency depending upon the value of the applied voltage. The free-running frequency is the frequency of the oscillator signal or the VCO output when the applied voltage is 0.
The phase detector receives an incoming signal and the output signal of the VCO and produces a phase detector output signal. The phase detector output signal represents the phase difference between the incoming and oscillator signals. The phase detector output signal is filtered through the low pass filter. The output of the low pass filter is the output of the PLL and the applied voltage to the VCO used to change the frequency of the VCO output. The closed-loop operation of the circuit maintains the VCO frequency locked to that of the incoming signal frequency.
If the applied signal of the VCO has the free-running frequency as an initial frequency, the PLL will acquire lock and the VCO will track the incoming signal frequency over some range, provided that the incoming signal frequency changes slowly. However, the loop will remain locked only over some finite range of frequency shift.
When the loop is operating in lock, the incoming signal and the VCO output signal fed to the phase comparator are of the same frequency. When the loop is trying to achieve lock, the output of the phase comparator contains frequency components at the sum and difference of the signals compared. The low-pass filter passes only the lower frequency component of the signals so that loop can obtain lock between incoming and VCO signals.
During lock, the output of the low-pass filter is the value needed to hold the VCO in lock with the incoming signal. The VCO then outputs a fixed amplitude wave signal at the frequency of the incoming signal. A fixed phase difference between the incoming and the VCO output signals to the phase comparator results in a fixed applied voltage to the VCO. Changes in the incoming signal frequency then results in change in the applied voltage to the VCO.
The limited operating range of the VCO and the feedback connection of the PLL circuit results in two frequency bands specified for a PLL: a capture range and a lock range. The capture range of the PLL is the frequency range centered about the VCO free-running frequency over which the loop can acquire lock with the input signal. The lock range of the PLL is generally wider than the capture range and is the range over which the PLL can maintain lock with the incoming signal once the PLL achieves capture. Within the capture-and-lock frequency ranges, the applied voltage drives the VCO frequency to match that of the incoming signal.
A PLL can be used in a wide variety of applications, including (1) modems, telemetry receivers and transmitters, tone decoders, AM detectors, and tracking filters; (2) demodulation of two data transmission or carrier frequencies in digital-data transmission used in frequency-shift keying (FSK) operation; (3) frequency synthesizers that provide multiples of a reference signal frequency (e.g. the carrier for the multiple channels of the citizen's band (CB) unit or marine-radio-band unit can be generated using a single-crystal-controlled frequency and its multiples generated using a PLL); and (4) FM demodulation networks for FM operation with excellent linearity between the input signal frequency and the PLL output voltage.
One example of a VCO implementation is a multiple-stage differential ring oscillator constructed using identical delay stages. Because each of the multiple stages are identical in construction, the delay of each stage is assumed to be the same. In such a differential ring design, the frequency of the VCO output signal is 1/(2×number of stages×the delay of each stage). Thus, the frequency of the VCO output signal is 1/(8×the delay of each stage) for a four-stage differential ring oscillator.
The performance of the PLL is dependent in part upon the time required for the VCO to acquire lock. The acquisition time is in turn dependent upon the phase difference between the incoming and VCO output signals. Reducing the range of the initial phase error uncertainty in the VCO output signal thus reduces the acquisition time.
The performance of the PLL is also dependent in part upon the proximity of the operating parameters of the VCO initially, such as upon start or restart, relative to the operating parameters of the VCO during operation. If the differences between the operating parameters at restart and during operation are large, the time required for the VCO to acquire lock is increased.
What is needed is a system and method to reduce or minimize the time required for the VCO to acquire lock. Ideally, the system and method introduces little or no disturbance to the high speed signal path of the delay cell. Preferably, the system and method provides or maintains values of VCO operating parameters at or close to those during operation.
SUMMARY OF THE INVENTION
An initial phase control for an oscillator is disclosed that provides control of an initial phase of the oscillator such as VCO. An initial phase start control circuit is coupled to each delay cell of a multiple delay cell oscillator such as a multiple-stage differential ring oscillator. The initial phase start control circuit is such that little or no disturbance is introduced to the high speed signal path of the delay cell. Preferably, each initial phase control circuit provides or maintains values of the VCO operating parameters at or close to those during operation. With the initial phase start, the VCO clock can be stopped asynchronously at any time.
The initial phase control for a delay cell may generally comprise a current source circuit coupled to a first node of the delay cell and a current provider. The current source circuit and current provider are preferably selectively and synchronously in an on or off state such that when the current source circuit and current provider are in an on state, the current source circuit draws a current through the first node of the delay cell and the current provider provides current through a second node of the delay cell.
In another embodiment, a method for controlling a delay cell generally includes inputting a set input to a current source circuit and inputting a reset input to the current source circuit and a current provider. The set and reset input selectively and synchronously transition the current source circuit and the current provider between an on and off state such that when the current source circuit and current provider are in an on state, the current source circuit draws a current through a first node of the delay cell and the current provider provides current through a second node to the delay cell.
An initial phase control for a differential ring oscillator may have a plurality of delay cells in a ring configuration. The initial phase control comprises at least one initial phase control circuit, each initial phase control circuit is coupled to one of the delay cells of the oscillator. Each initial phase control circuit comprises a current source circuit coupled to a first node of the delay cell to which the control circuit is coupled and a current provider. The current source circuit and current provider are selectively and synchronously in an on or off state such that when the current source circuit and current provider are in an on state, the current source circuit draws a current through the first node of the delay cell to which the control circuit is coupled and the current provider provides current through a second node of the delay cell to which the c
Pan Tzu-Wang
Shenoy Ravindra U.
Callahan Timothy P.
LSI Logic Corporation
Luu An T.
LandOfFree
Initial phase control of an oscillator does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Initial phase control of an oscillator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Initial phase control of an oscillator will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2577956