Chemistry: molecular biology and microbiology – Enzyme – proenzyme; compositions thereof; process for... – Hydrolase
Reexamination Certificate
2000-09-08
2004-09-28
Prouty, Rebecca E. (Department: 1652)
Chemistry: molecular biology and microbiology
Enzyme , proenzyme; compositions thereof; process for...
Hydrolase
C435S069200, C514S211050, C514S274000, C514S326000, C514S336000, C514S381000, C514S428000, C514S512000, C514S513000, C514S564000, C514S601000
Reexamination Certificate
active
06797504
ABSTRACT:
FIELD OF THE INVENTION
The present invention is directed to methods of reducing tumor progression and/or metastasis. Matriptase and MTSP1 are serine proteases reported to be expressed in high levels in certain cancer cell lines.
According to one aspect, the present invention provides compounds which bind to the serine protease domain and are active as selective inhibitors of the serine protease activity of matriptase or MTSP1. These inhibitors can be used to inhibit the serine protease activity of matriptase or MTSP1 and thereby reduce harmful effects of its over-expression. Another aspect of the present invention is directed to the use of compounds that bind to the serine protease domain and selectively inhibit the serine protease activity of matriptase or MTSP1; such compounds may be used in the prevention and treatment of cancerous conditions and which decrease the growth of cancerous tumors and retard metastasis.
BACKGROUND AND INTRODUCTION TO THE INVENTION
Cancer is the second leading cause of death in the United States, after heart disease (Boring, C. C. et al., 1993, CA Cancer J. Clin. 43:7), and develops in one in three Americans. One of every four Americans dies of cancer. Cancer is characterized primarily by an increase in the number of abnormal, or neoplastic, cells derived from a given normal tissue which proliferate to form a tumor mass, the invasion of adjacent tissues by these neoplastic tumor cells, and the generation of malignant cells which spread via the blood or lymphatic system to regional lymph nodes and to distant sites. The latter progression to malignancy is referred to as metastasis.
Cancer can be viewed as a breakdown in the communication between tumor cells and their environment, including their normal neighboring cells. Signals, both growth-stimulatory and growth-inhibitory, are routinely exchanged between cells within a tissue. Normally, cells do not divide in the absence of stimulatory signals, and likewise, will cease dividing in the presence of inhibitory signals. In a cancerous, or neoplastic, state, a cell acquires the ability to “Override” these signals and to proliferate under conditions in which normal cells would not grow.
Tumor cells must acquire a number of distinct aberrant traits to proliferate. Reflecting this requirement is the fact that the genomes of certain well-studied tumors carry several different independently altered genes, including activated oncogenes and inactivated tumor suppressor genes. Each of these genetic changes appears to be responsible for imparting some of the traits that, in aggregate, represent the full neoplastic phenotype (Land, H. et al. 1983, Science 222:771; Ruley, H. E., 1983, Nature 304:602; Hunter, T. 1991, cell 64:249).
In addition to unhindered cell proliferation, cells must acquire several traits for tumor progression to occur. For example, early on in tumor progression, cells must evade the host immune system. Further, as tumor mass increases, the tumor must acquire vasculature to supply nourishment and remove metabolic waste. Additionally, cells must acquire an ability to invade adjacent tissue, and, ultimately, cells often acquire the capacity to metastasize to distant sites.
A variety of biochemical factors have been associated with different phases of metastases. Cell surface receptors for collagen, glycoproteins such as laminin, or proteoglycans, facilitate tumor cell attachment, an important step in invasion and metastases. Attachment then triggers the release of degradative enzymes which facilitate the penetration of tumor cells through tissue barriers. Once the tumor cells have entered the target tissue, specific growth factors are required for further proliferation.
One of the major characteristics of cancer cells is their ability to invade surrounding normal tissues and metastasize to distant body sites. It is the metastatic nature of malignant tumors that presents a great challenge to clinicians in terms of treatment, since the tumor is no longer localized to one area.
Tumor invasion (or progression) is a complex series of events, in which tumor cells detach from the primary tumor, break down the normal tissue surrounding it, and migrate into a blood or lymphatic vessel to be carried to a distant site. The breaking down of normal tissue barriers is accomplished by the elaboration of specific enzymes that degrade the proteins of the extracellular matrix that make up basement membranes and stromal components of tissues.
A class of extracellular matrix degrading enzymes has been identified called the matrix metalloproteinases (MMP). Two of the matrix metalloproteinases have been implicated in tumor invasion. The type IV collagenase has been correlated with the metastatic potential of tumor cells. (Liotta, et al.,
Nature
, 284:67-68 (March, 1980)). It has been reported that the production of the matrix metalloproteinase stromelysin was associated with malignant tumors with metastatic potential. (McDonnell and Matrisian,
Smnrs. in Cancer Biology
1:107-115 (1990); McDonnell and Matrisian,
Cancer and Metastasis Reviews
9:309-319 (1990).)
The capacity of cancer cells to metastasize and invade tissue is facilitated by degradation of the basement membrane. Several proteinase enzymes have been reported to facilitate the process of invasion of tumor cells. One family of enzymes, MMPs, has been implicated as enhancing degradation of the basement membrane to allow tumorous cells to invade tissues. MMPs have been reported to differ in molecular weight and antigenic properties. Previously, two major metalloproteinases having molecular weights of about 70 kDa and 92 kDa have been studied. Both of these MMPs have been reported to enhance ability of tumor cells to metastasize. Two natural inhibitors of these enzymes known as tissue inhibitors of metalloproteinase (TIMP) have been identified. The inactivated unclipped collagenases are generally secreted as a complex with TIMP. Enzymatic activity of the 72 kDa and 92 kDa proteins has been reported to depend on secreted ratios of collagenase/TIMP.
Matriptase is a trypsin-like serine protease which has been isolated and cloned from T-47D human breast cancer cells. Matriptase has been isolated from T-47D cell-conditioned medium. (Lin, et al.,
J. Biol. Chem
. 274(26):18231-18236 (1999).) Upon analysis of the cDNA, it was determined that the protease had 683 amino acids and contained three main structural regions: a serine protease domain near the carboxyl-terminal region, four tandem low-density lipoprotein receptor domains, and two tandem complement subcomponents C1r and C1s. Matriptase was reported to be a mosaic protein with broad spectrum cleavage activity and two potential regulatory modules. It was named “matriptase” because of the ability of the protease to degrade the extra-cellular matrix and its trypsin-like activity. (Lin, et al.,
J. Bio. Chem
. 274:18231-18236 (1999).)
Matriptase is reported to be a protease having activity in degrading extracellular matrix that is localized on the cell surface. When isolated from breast cancer cells (or T-47D cell conditioned medium), matriptase has been reported to be primarily in an uncomplexed form. Matriptase has been isolated from human milk. When isolated from human milk, matriptase was reported to be in one of two complexed forms, 95 kDa (the predominant form) and 110 kDa; uncomplexed matriptase was not detected. (Liu, et al.,
J. Biol. Chem
. 274(26):18237-18242 (1999).) It has been proposed that matriptase exists as an uncomplexed protease when in its active state. In breast milk, matriptase has been reported to exist in complex with a fragment of hepatocyte growth factor inhibitor-1 (HAI-1), a Kuntz-type serine protease inhibitor having activity against trypsin-like serine proteases.
Ecotin and Ecotin M84R/M85R have been reported to be macromolecular inhibitors of serine proteases of the chymotrypsin fold and have been reported to inhibit ductal branching, morphogenesis and differentiation of the explanted ductal prostate. PC-3 is a cell line derived from prostate cancer epithelial cells. Ecotin an
Araldi Gian Luca
Coombs Gary Samuel
Madison Edwin L.
Ong Edgar O.
Reiner John Eugene
Dendreon San Diego LLC
Prouty Rebecca E.
Townsend and Townsend / and Crew LLP
Walicka Malgorzata A.
LandOfFree
Inhibitors of serine protease activity of matriptase or MTSP1 does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Inhibitors of serine protease activity of matriptase or MTSP1, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Inhibitors of serine protease activity of matriptase or MTSP1 will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3241808