Inhibitors of prenyl-protein transferase

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S253060, C514S253070, C514S253090, C514S254020, C514S254040, C514S218000, C544S363000, C544S364000, C544S367000, C544S369000, C544S370000, C544S231000, C540S575000

Reexamination Certificate

active

06335343

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to certain compounds that are useful for the inhibition of prenyl-protein transferases and the treatment of cancer. In particular, the invention relates to prenyl-protein transferase inhibitors which are efficacious in vivo as inhibitors of geranylgeranyl-protein transferase type I (GGTase-I) and that inhibit the cellular processing of both the H-Ras protein and the K4B-Ras protein.
Prenylation of proteins by prenyl-protein transferases represents a class of post-translational modification (Glomset, J. A., Gelb, M. H., and Farnsworth, C. C. (1990). Trends Biochem. Sci. 15, 139-142; Maltese, W. A. (1990).
FASEB J
. 4, 3319-3328). This modification typically is required for the membrane localization and function of these proteins. Prenylated proteins share characteristic C-terminal sequences including CAAX (C, Cys; A, an aliphatic amino acid; X, another amino acid), XXCC, or XCXC. Three post-translational processing steps have been described for proteins having a C-terminal CAAX sequence: addition of either a 15 carbon (farnesyl) or 20 carbon (geranylgeranyl) isoprenoid to the Cys residue, proteolytic cleavage of the last 3 amino acids, and methylation of the new C-terminal carboxylate (Cox, A. D. and Der, C. J. (1992a). Critical Rev. Oncogenesis 3:365-400; Newman, C. M. H. and Magee, A. I. (1993). Biochim. Biophys. Acta 1155:79-96). Some proteins may also have a fourth modification: palmitoylation of one or two Cys residues N-terminal to the farnesylated Cys. While some mammalian cell proteins terminating in XCXC are carboxymethylated, it is not clear whether carboxy methylation follows prenylation of proteins terminating with a XXCC motif (Clarke, S. (1992). Annu. Rev. Biochem. 61, 355-386).
For all of the prenylated proteins, addition of the isoprenoid is the first step and is required for the subsequent steps (Cox, A D. and Der, C. J. (1992a). Critical Rev. Oncogenesis 3:365-400; Cox, A. D. and Der, C. J. (1992b) Current Opinion Cell Biol. 4:1008-1016).
Three enzymes have been described that catalyze protein prenylation: farnesyl-protein transferase (FPTase), geranylgeranyl-protein transferase type I (GGPTase-I), and geranylgeranyl-protein transferase type-II (GGPTase-II, also called Rab GGPTase). These enzymes are found in both yeast and mammalian cells (Clarke, 1992;
Schafer, W. R. and Rine, J. (1992) Annu. Rev. Genet. 30:209-237). Each of these enzymes selectively uses farnesyl diphosphate or geranyl-geranyl diphosphate as the isoprenoid donor and selectively recognizes the protein substrate. FPTase farnesylates CaaX-containing proteins that end with Ser, Met, Cys, Gln or Ala. For FPTase, CaaX tetrapeptides comprise the minimum region required for interaction of the protein substrate with the enzyme. The enzymological characterization of these three enzymes has demonstrated that it is possible to selectively inhibit one with little inhibitory effect on the others (Moores, S. L., Schaber, M. D., Mosser, S. D., Rands, E., O'Hara, M. B., Garsky, V. M., Marshall, M. S., Pompliano, D. L., and Gibbs, J. B., J. Biol. Chem., 266:17438 (1991), U.S. Pat. No. 5,470,832).
The prenylation reactions have been shown genetically to be essential for the function of a variety of proteins (Clarke, 1992; Cox and Der, 1992a; Gibbs, J. B. (1991). Cell 65: 1-4; Newman and Magee, 1993; Schafer and Rine, 1992). This requirement often is demonstrated by mutating the CaaX Cys acceptors so that the proteins can no longer be prenylated. The resulting proteins are devoid of their central biological activity. These studies provide a genetic “proof of principle” indicating that inhibitors of prenylation can alter the physiological responses regulated by prenylated proteins.
The Ras protein is part of a signaling pathway that links cell surface growth factor receptors to nuclear signals initiating cellular proliferation. Biological and biochemical studies of Ras action indicate that Ras functions like a G-regulatory protein. In the inactive state, Ras is bound to GDP. Upon growth factor receptor activation, Ras is induced to exchange GDP for GTP and undergoes a conformational change. The GTP-bound form of Ras propagates the growth stimulatory signal until the signal is terminated by the intrinsic GTPase activity of Ras, which returns the protein to its inactive GDP bound form (D. R. Lowy and D. M. Willumsen, Ann. Rev. Biochem. 62:851-891 (1993)). Activation of Ras leads to activation of multiple intracellular signal transduction pathways, including the MAP Kinase pathway and the Rho/Rac pathway (Joneson et al., Science 271:810-812).
Mutated ras genes are found in many human cancers, including colorectal carcinoma, exocrine pancreatic carcinoma, and myeloid leukemias. The protein products of these genes are defective in their GTPase activity and constitutively transmit a growth stimulatory signal.
The Ras protein is one of several proteins that are known to undergo post-translational modification. Farnesyl-protein transferase utilizes farnesyl pyrophosphate to covalently modify the Cys thiol group of the Ras CAAX box with a farnesyl group (Reiss et al., Cell, 62:81-88 (1990); Schaber et al., J. Biol. Chem., 265:14701-14704 (1990); Schafer et al., Science, 249:1133-1139 (1990); Manne et al., Proc. Natl. Acad. Sci USA, 87:7541-7545 (1990)).
Ras must be localized to the plasma membrane for both normal and oncogenic functions. At least 3 post-translational modifications are involved with Ras membrane localization, and all 3 modifications occur at the C-terminus of Ras. The Ras C-terminus contains a sequence motif termed a “CAAX” or “Cys—Aaa
1
—Aaa
2
—Xaa” box (Cys is cysteine, Aaa is an aliphatic amino acid, the Xaa is any amino acid) (Willumsen et al., Nature 310:583-586 (1984)). Depending on the specific sequence, this motif serves as a signal sequence for the enzymes farnesyl-protein transferase or geranylgeranyl-protein transferase, which catalyze the alkylation of the cysteine residue of the CAAX motif with a C
15
or C
20
isoprenoid, respectively. (S. Clarke., Ann. Rev. Biochem. 61:355-386 (1992); W. R. Schafer and J. Rine, Ann. Rev Genetics 30:209-237 (1992)). Direct inhibition of farnesyl-protein transferase would be more specific and attended by fewer side effects than would occur with the required dose of a general inhibitor of isoprene biosynthesis.
Other farnesylated proteins include the Ras-related GTP-binding proteins such as RhoB, fungal mating factors, the nuclear lamins, and the gamma subunit of transducin. James, et al., J. Biol. Chem. 269, 14182 (1994) have identified a peroxisome associated protein Pxf which is also farnesylated. James, et al., have also suggested that there are farnesylated proteins of unknown structure and function in addition to those listed above.
Inhibitors of farnesyl-protein transferase (FPTase) have been described in two general classes. The first class includes analogs of farnesyl diphosphate (FPP), while the second is related to protein :substrates (e.g., Ras) for the enzyme. The peptide derived inhibitors that have been described are generally cysteine containing molecules that are related to the CAAX motif that is the signal for protein prenylation. (Schaber et al., ibid; Reiss et. al., ibid; Reiss et al., PNAS, 88:732-736 (1991)). Such inhibitors may inhibit protein prenylation while serving as alternate substrates for the farnesyl-protein transferase enzyme, or may be purely competitive inhibitors (U.S. Pat. No. 5,141,851, University of Texas; N. E. Kohl et al., Science, 260:1934-1937 (1993); Graham, et al., J. Med. Chem., 37, 725 (1994)).
Mammalian cells express four types of Ras proteins (H-, N-, K4A-, and K4B-Ras) among which K4B-Ras is the most frequently mutated form of Ras in human cancers. The genes that encode these proteins are abbreviated H-ras, N-ras, K4A-ras and K4B-ras respectively.
H-ras is an abbreviation for Harvey-ras. K4A-ras and K4B-ras are abbreviations for the Kirsten splice variants of ras that contain the 4A and 4B exons, respectively. Inhibition of farnesyl-protein trans

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Inhibitors of prenyl-protein transferase does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Inhibitors of prenyl-protein transferase, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Inhibitors of prenyl-protein transferase will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2868807

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.