Inhibition of reflective ash build-up in coal-fired furnaces

Fuel and related compositions – Coal treating process or product thereof – Removal of undesirable

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06613110

ABSTRACT:

BACKGROUND OF THE INVENTION
(1) Field of the Invention
The present invention relates to ash formation during the burning of coal and more particularly to methods and compositions for treatment of coal to reduce the amount of ash deposition onto surfaces during the burning of coal.
(2) Description of the Related Art
Sub-bituminous coal of the Powder River Basin of the United States typically includes a significant amount of calcium bound within the coal structure. In fact, the typical calcium level of this type of coal burned in industrial boilers in the United States today is substantially higher than it had been in the past and that level is expected to increase in the future as industries continue to turn to lower sulfur level coal.
When the coal is burned, the calcium in the coal is converted to calcium oxide. The formation of calcium oxide results in an ash that is reflective and whiter than the fly ash produced upon combustion of bituminous coal. This reflective ash accumulates on surfaces situated in the structure in which the burning takes place. Such structures will be referred to herein as “furnaces,” as such term is considered in its broad sense to refer to any enclosed structure in which heat is produced. A particular situation in which such ash formation is encountered is in furnaces employed in boiler systems, but the furnaces contemplated herein are not limited to such systems and may be incorporated into any number of uses.
Prominent among the surfaces on which reflective ash tends to accumulate are the furnace tube walls through which heat is to be transferred from the combustion taking place in the furnace. Such ash accumulation is undesirable because the layer it forms over the surfaces is an insulative barrier that reduces the heat transfer through the surfaces, thereby reducing the efficiency of heat transfer from the furnace. Such ash accumulation is also undesirable because the reflective ash layer reflects the heat back into the burner area, increasing the gas and flame temperatures beyond that for which the furnace was designed, which in turn causes the increased heat to radiate back to the fly ash, eventually creating a slagging environment. Moreover, because of the inadequate heat transfer to the water flowing through the furnace wall tubes, the furnace exit gas temperature (FEGT) rises above the design level, increasing the fouling propensity in the convective zone and, in the case of the boiler, finally increasing the boiler exit gas temperature. The increased FEGT also raises the temperature of steam in downstream heat absorption sections above design conditions, requiring use of cooling spray water to reduce the steam temperature.
The formation of this type of ash has become more pronounced in recent years. Many boiler furnaces were designed for burning high sulfur bituminous coal. However, as alluded to above, beginning in the late 1970's and early 1980's, environmental concerns led to conversion from burning high sulfur bituminous coal to burning low sulfur coals, such as that from the Powder River Basin in Wyoming (PRB coal), began. Even though the ash content of PRB coals is lower than that of the high sulfur coals they replace, PRB coals tend to be high in calcium. Thus, burning the lower sulfur coals in the furnaces designed for relatively high sulfur coal has resulted in increased slagging, and particularly increased white ash formation. See, for example, “PRB Coal Switch Not a Complete Panacea,” by Buecker, B. and Meinders, J.,
Power Engineering,
November 2000, pp. 76-80.
Conventionally, equipment such as soot blowers and water lances have been employed to reduce slagging and lower the FEGT, but with limited success and the additional costs, efforts and interference associated with such equipment. Moreover, use of a water lance is undesirable because it introduces cold water into the furnace, inducing thermal stress to the tubes, decreasing the furnace wall tube life and increasing the maintenance and replacement costs of the boiler.
Other prior art methods have addressed the problem of ash accumulation on furnace walls with chemical techniques for darkening the ash on the walls. For example, U.S. Pat. No. 5,819,672, incorporated herein by reference, describes the addition of a darkening agent such as iron oxide and, preferably, also a fluxing agent to produce a dark ash coating or an additional dark ash coat over the existing ash on the furnace walls. Because the ash is darkened, not only is the tendency of the ash to reflect heat back into the furnace reduced, but the heat absorption by the ash is increased, thereby reportedly aiding transfer of heat from the furnace through the walls thereof. Although the additives may be applied to the coal, the preferred method contemplates applying the dark coat directly to the ash. In any event, such techniques do not eliminate—or even reduce—ash accumulation and suffer from various other disadvantages as well. For example, pursuant to such techniques, ash still is allowed to build up on the surfaces at previous rates with the attendant problems, such as the need for routine cleaning or replacement.
In the above-noted article in
Power Engineering,
it is reported that ADA Environmental Solutions has experimented with the application of a proprietary mixture of iron oxides and stabilizing chemicals to coal prior to combustion to enhance the viscosity characteristics of the slag formed from burning PRB coal and that the preliminary results from this experimentation “have been very promising.” However, no further information is provided in the article as to the composition of the additive and, although the article later discusses ash control, the article nowhere discusses the additive with respect to the ash control. Indeed, the article indicates that ash accumulation and high FEGT are still significant problems, requiring the use of water lances.
Thus, the industry is still searching for an effective and efficient means for darkening the ash and reducing the FEGT, slagging and ash accumulation on surfaces in coal-burning furnaces. Techniques that accomplish such objectives, while avoiding the need for purchasing and operating equipment such as soot blowers and water lances would be particularly desirable. And, of course, it is also especially desirable that the technique avoid raising adverse environmental implications.
SUMMARY OF THE INVENTION
Briefly, therefore, the present invention is directed to a novel method for inhibiting accumulation of reflective ash on surfaces in a furnace in which high calcium-containing coal is burned. According to the method, an effective amount of an iron compound is added to the coal to produce treated coal, free of added fluxing agent, and the treated coal is then burned.
The present invention also is directed to a novel method for increasing the melting point of ash produced during the burning of calcium-containing coal. According to the method, an effective amount of an iron compound is added to the coal to produce treated coal, and the treated coal is burned, producing ash of increased melting point.
Among the several advantages found to be achieved by the present invention, therefore, may be noted the provision of a method for darkening ash formed in the combustion of coal; the provision of such method that also reduces the tendency of the ash to accumulate on surfaces in the furnace; the provision of such method that also reduces the FEGT in the furnace; the provision of such method that improves the overall boiler efficiency and reduces generation cost; the provision of such method that eliminates the need for soot blowers and water lances; the provision of such method that reduces slagging in the furnace; and the provision of such method that avoids introduction of adverse environmental consequences.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
In accordance with the present invention, it has been discovered that, surprisingly, a darker ash may be produced and accumulation of reflective ash on surfaces in a furnace may be reduced simply by a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Inhibition of reflective ash build-up in coal-fired furnaces does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Inhibition of reflective ash build-up in coal-fired furnaces, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Inhibition of reflective ash build-up in coal-fired furnaces will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3027776

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.