Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...
Reexamination Certificate
2002-09-06
2004-08-10
Owens, Amelia (Department: 1625)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Having -c-, wherein x is chalcogen, bonded directly to...
C514S100000, C514S455000, C549S220000, C549S387000, C549S403000
Reexamination Certificate
active
06774142
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to chemical compositions, preparations and methods for medical treatment and more particularly to the use of certain substituted 3-Deoxyflavonoid compounds for immunosuppressive treatment of autoimmune disorders or inflammatory diseases in mammalian patients.
BACKGROUND OF THE INVENTION
Flavonoids are polyphenolic compounds that occur ubiquitously in foods of plant origin. Over 4000 structurally unique flavonoids have been identified in plant sources (Harborne et al., 1975 The Flavonoids, Academic Press, New York; Cody V, Middleton E, Harborne J B and Beretz A eds; Alan R. Liss, Inc, New York, 1986 Plant Flavonoids in Biology and Medicine, Part 1 and 2). The flavonoids are found in fruits, vegetables, nuts, seeds, herbs, spices, stems, flowers, as well as tea and red wine and are prominent components of citrus fruits and other food sources and are consumed regularly with the human diet.
Flavonols, which are not claimed in this invention, are the most abundant naturally occurring flavonoids and their content in the most common edible fruits, vegetables, and seeds may reach up to a few hundred mg kg
−1
of fresh weight. Early estimations showed the daily average intake of total flavonoids to be about 1.0 g, with 115 mg being the share of flavonols and flavones. Recently, the “Seven Countries Study” revealed that total daily flavonoid intake may vary from 2.6 to 68.2 mg, with the percentage of quercetin being 39-100%. In another study on 17 volunteers from 14 countries, mean consumption of quercetin and kaempferol was found to be approximately 28 mg/day (Makris and Rossiter, 2001 J. Agric. Food Chem., 49, 3216).
The investigations on the effects of flavonoid-containing plant foods have been based, to a great extent, on the basis of analytical data from raw plant tissues, and thus they actually represent the composition of foodstuffs only in their raw state. Environmental variables and processing may affect to a significant extent the concentrations and biological activities of flavonoids, and these factors have not been taken into consideration. The very few recent research studies on the impact of common domestic and industrial processing practices on flavonoid composition of plant foods show that common domestic processes such as boiling, frying, and microwave cooking can lower quercetin concentrations in onions and tomatoes by 35-82%. Moreover, blanching has been found to reduce quercetin and kaempferol levels in onions by 39 and 64%, respectively, and myricetin and quercetin in sweet potato leaves by 19 and 50%, respectively. This aspect, nevertheless, is of great importance, considering that only a small amount of fruits and vegetables are consumed in their raw state, whereas most of them need to be processed for safety, quality, and economic reasons.
An estimation of the total flavonoid intake is difficult, because only limited data on contents of foods are available. There have been several efforts to quantitate the amounts of different flavonoids in assorted food plants. According to Hertog et al. (1992) J Agric Food Chem 40: 2379-2383, the mean daily intake of mixed flavonoids was only 23 mg/day based on data from the 1987-88 Dutch National Food Consumption Survey. The measured flavonoids were the 3-hydroxy flavones, quercetin, kaempferol, myricetin, and the 3-deoxyflavones, apigenin, and luteolin. The intake of these five antioxidant flavonoids was 23 mg/day, which exceeds the intake of other familiar antioxidants such as &bgr;-carotene (2-3 mg/day) and vitamin E (7-10 mg/day) and is about one-third the average intake of vitamin C (70-100 mg/day). The amount of 23 mg/day was mostly flavonols and flavones measured as aglycones and the flavonoid consumed most (16 mg/day) was quercetin. However, it should be stressed that recent evidence indicates that flavonoid-glycosides are much more readily absorbed (than the aglycones) by humans (Hollman and Katan, 1998
Arch Toxicol Suppl
20: 237-248 and Absorption, metabolism, and bioavailability of flavonoids, in
Flavonoids in Health and Disease
(Rice-Evans C A and Packer L eds, 1998 pp 483-522, Marcel Dekker, Inc., New York.). Moreover, both the amount and the source vary appreciably in different countries and with the exception of the Mediterranean diet, which is rich in olive oil, citrus fruits, and greens, it is very likely that most developed countries lack diets rich in the flavonoids, and particularly, 3-deoxyflavonoids, which could provide pharmacologically significant concentrations in body fluids and tissues.
The flavonoids are typical phenolic compounds and, therefore, act as potent metal chelators and free radical scavengers and are powerful chain-breaking antioxidants. They have beneficial health effects partly because of these antioxidant properties. The flavonoids display a remarkable array of biochemical and pharmacological actions, some of which suggest that certain members of this group of compounds may significantly affect the function of various mammalian cellular systems. They have long been recognized to possess anti-inflammatory, antioxidant, antiallergic, hepatoprotective, antithrombotic, antiviral, and anticarcinogenic activities. However, Rimm and coworkers (1996
Ann Intern Med
125: 384-389) did not find a strong inverse association between intake of flavonoids and total coronary heart disease. The intake of flavonols and flavones was inversely associated with subsequent coronary heart disease in most but not all prospective epidemiological studies.
Vegetables and fruits often associated with low rates of cancer in epidemiological studies are not major sources of dietary flavonols and flavones and therefore these may not be directly responsible to the cancer-protective effect; a protective effect against cardiovascular disease is also not conclusive. Furthermore, It has also been established in the literature that quercetin, a flavonol (3-hydroxyflavone), has mutagenic properties and therefore its glycoside, rutin, is expected to behave similarly due to its facile hydrolysis to quercetin. The inventors have unexpectedly found that flavonols may have an adverse effect to that exerted by 3-deoxyflavonoids of this invention and may counteract the therapeutic benefits of the latter.
Flavonoids present in foods were considered non-absorbable because they are bound to sugars as &bgr;-glycosides. However, it is known that human absorption of the quercetin glycosides from onions (52%) is far better than that of the pure aglycone (24%) as shown by researchers in the Netherlands. Using more recent analytical techniques, plasma quercetin concentrations were measured following ingestion of fried onions containing quercetin glycosides equivalent to 64 mg of quercetin aglycone (Hollman et al., 1996
Free Radical Biol Med
21: 703-707). Peak plasma levels of 196 &mgr;g/ml were achieved after 2.9 h with a half-life of absorption of 0.87 h. The distribution phase half-life was 3.8 h and the elimination phase half-life was 16.8 h. Thus, oral dietary (cooked vegetable) quercetin can be absorbed and reach tissues and plasma where antioxidant and other activities could be exerted. What is true for quercetin is very likely true also for other flavonoids in other vegetable sources. Hollman and Katan (1998
Arch Toxicol Suppl
20: 237-248) reviewed the bioavailability and health effects of dietary flavonols in humans. They found that quercetin glycosides from onions were more readily absorbed than the pure aglycone; absorbed quercetin was eliminated slowly from the blood, suggesting once again that the enterohepatic circulation may be operative. In related studies, Hollman et al. (1995
FEBS Lett
418: 152-156) concluded that quercetin-glucose conjugates were more readily absorbable; the suggestion was made that the glycosides may be absorbed via the intestinal sugar uptake route. It is apparent from the prior art that the ingested flavonoid glycosides are rapidly metabolized to aglycones by ubiquitous glycosidases and the pharmacokinetic parameters change dramat
Lahey Thomas P.
Rajadhyasksha Vithal J.
Buyan Robert D.
Owens Amelia
Stout, Uxa Buyan & Mullins, LLP
LandOfFree
Inhibition by 3-deoxyflavonoids of T-lymphocyte activation... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Inhibition by 3-deoxyflavonoids of T-lymphocyte activation..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Inhibition by 3-deoxyflavonoids of T-lymphocyte activation... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3328173