Drug – bio-affecting and body treating compositions – Whole live micro-organism – cell – or virus containing – Fungus
Reexamination Certificate
1994-09-28
2002-12-31
Lilling, Herbert J. (Department: 1651)
Drug, bio-affecting and body treating compositions
Whole live micro-organism, cell, or virus containing
Fungus
C424S093100, C424S093300, C424S093400, C424S093500, C435S255100, C435S255500, C435S938000
Reexamination Certificate
active
06500425
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the biological control of plant diseases (e.g. either pre-harvest or postharvest diseases) in agricultural commodities such as fruit. More particularly, this invention relates to: (1) methods for biologically controlling plant diseases (such as post harvest rots) on agricultural commodities using either, (a) at least one calcium salt and at least one microorganism which is an antagonist to plant pathogens, or (b) at least one microorganism which is an antagonist against plant pathogens but is not antibiotic; (2) compositions useful in such methods, and; (3) manufactures produced by such methods.
2. Description of Prior Art
Postharvest diseases of fruit cause 15 to 25% losses yearly in the fruit industry worldwide. Fungicides, the major weapon in combatting these diseases, are often ineffective and pose hazards to humans and the environment. Therefore, a critical need exists for new methods to control postharvest diseases without posing such hazards to humans or the environment.
Recently, it has been shown that the postharvest treatment of fruit with antagonistic microorganisms is an effective approach to the control of postharvest rots. Remarkable success was shown in the control of brown rot in peaches caused by
Monilinia fructicola
(Wint.) Honey with
Bacillus subtilis.
Pusey et al. [Plant Dis. 86:753-756 (1986)]. De Matos was able to reduce mold incidence from 35% to 8% when a species of Trichoderma was inoculated with
Penicillium digitatum
into lemon peel. De Matos, Ph.D. Dissertation, University of California, Riverdale, (1983). Singh and Deverall demonstrated biocontrol with bacterial antagonists to the citrus pathogens
Alternaria citri
Pierce,
Geotrichum candidum
link. ex Pers., and
P. digitatum.
Singh et al. [Trans. Br. Mycol. Soc. 83:487-490 (1983)]. Dipping wounded citrus fruit in suspensions of bacterial cells, particularly a strain of
Bacillus subtilis
(Ehrenber) Cohn, delayed decay by the three rot pathogens.
SUMMARY OF THE INVENTION
A first aspect of the present invention relates to processes for inhibiting plant pathogen development on an agricultural commodity comprising: applying (in the context of the present invention, “applying” is intended to be limited to the intentional and willful dispensing of the microorganism(s) onto the agricultural commodity, as opposed to the natural occurrence of a microorganism on an agricultural commodity) to an agricultural commodity at least one microorganism, the at least one microorganism being an antagonist against plant pathogens but not being antibiotic, wherein the at least one microorganism is applied in an amount effective to inhibit plant pathogen development on the agricultural commodity. The most striking and novel aspect of this invention is the use of microorganisms which. do not produce antibiotics to control the diseases of agricultural commodities. This method is of importance to the consumer because it avoids the potential adverse effects of antibiotics in the food supply, such as the development of antibiotic resistance in human pathogens.
A second aspect of the present invention relates to processes for inhibiting plant pathogen development on an agricultural commodity comprising: applying to the agricultural commodity at least one calcium salt and at least one microorganism which is an antagonist against plant pathogens (and preferably not antibiotic); wherein the at least one calcium salt and the at least one microorganism are applied to the agricultural commodity in an amount effective to inhibit plant pathogen development on said agricultural commodity.
A third aspect of the instant invention pertains to compositions which maybe utilized in carrying out the aforementioned processes. Such compositions include:
A composition comprising a mixture of, (1) at least one microorganism which is an antagonist against plant pathogens but is not antibiotic and, (2) a carrier for said at least one microorganism selected from the group consisting of a gel, gum, wax, oil, talc, starch and mixtures thereof;
A composition comprising a mixture of, at least one microorganism and a carrier for said at least one microorganism, wherein at least 99% by count of said at least one microorganism is antagonistic against plant pathogens but is not antibiotic; and/or,
A composition comprising a mixture of, at least one calcium salt and at least one microorganism which is an antagonist against plant pathogens, and preferably is not antibiotic (preferably such a composition may: (a) consist essentially of the at least one calcium salt and the at least one microorganism, and/or; (b) have at least 99% by count of microorganisms therein be antagonistic to plant pathogens, and/or; (c) have at least 99% by count of microorganisms therein be nonantibiotic).
A fourth aspect of the present invention relates to manufactures which may include:
A manufacture comprising an agricultural commodity having thereon a concentration of at least about 10
5
colony forming units per square centimeter of at least one microorganism which is an antagonist against plant pathogens but is not antibiotic;
A manufacture comprising an agricultural commodity having microorganisms thereon, wherein the majority of said microorganisms are at least one microorganism which is an antagonist against plant pathogens but is not antibiotic;
A manufacture comprising an agricultural commodity having thereon a calcium salt and at least one microorganism which is an antagonist against plant pathogens (and preferably is not antibiotic) in a concentration of at least about 10
5
colony forming units per square centimeter; and/or
A manufacture comprising an agricultural commodity having a calcium salt and microorganisms thereon, wherein the majority of microorganisms on said agricultural commodity are at least one microorganism which is an antagonist against plant pathogens.
A fifth aspect of the present invention relates to a biologically pure culture of an isolate of
Hanseniaspora uvarum
having the identifying characteristics of isolate NRRL Y-18527.
The aforementioned microorganism(s) may for example be selected from the group consisting of: fungi (e.g. yeast), bacteria, viruses and mixtures thereof.
In regard to a preferred embodiment of the present invention, we have discovered new strains of yeast that are highly effective in controlling a variety of plant (e.g. fruit-rot) pathogens which affect a wide variety of agricultural commodities. Three isolates of the new strains have been deposited with the culture collection at The Northern Regional Research Center, U.S. Department of Agriculture, Peoria, Ill. 61604, under the acquisition numbers NRRL Y-18313, NRRL Y-18314 and NRRL Y-18527. NRRL Y-18314 has been identified as
Pichia quilliermondii
and NRRL Y-18527 has been identified as
Hanseniaspora uvarum
(Nidlaus) Shehata, Mrak et Phaff. The deposited materials have been accepted for deposit under the Budanest Treaty on the International Recognition of the Deposit of Microorganisms for the purposes of patent procedure. Further, (1) said depository affords permanence of the deposits and ready accessibility thereto by the public if a patent is granted, (2) the materials have been deposited under conditions that assure that access to the materials will be available during the pendency of the patent application to one determined by the Comissioner of Patents and Trademarks to be entitled thereto under 37 CFR 1.14 and 35 USC 122. All restrictions on the availability of progenies of the strain to the public will be irrevocably removed upon the granting of the patent.
Accordingly, it is an object of the present invention to provide novel biological control agents which pose no risk to the consumer and are highly effective in controlling a variety of plant pathogens causing preharvest and postharvest diseases on a variety of agricultural commodities (e.g. fruits).
It is also an object of the invention to provide a method of biologically controlling plant disea
Chalutz Edo
McLaughlin Randy J.
Wilson Charles L.
Fado John D.
Graeter Janelle S.
Lilling Herbert J.
Silverstein J. Howard
The United States of America as represented by the Secretary of
LandOfFree
Inhibiting plant pathogens with an antagonistic... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Inhibiting plant pathogens with an antagonistic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Inhibiting plant pathogens with an antagonistic... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2979169