Inherently robust repair process for thin film circuitry...

Electricity: conductors and insulators – Conduits – cables or conductors – Preformed panel circuit arrangement

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C174S250000, C174S261000, C361S777000

Reexamination Certificate

active

06541709

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to multilayer thin film (MLTF) structure containing electronic packages such as multi-chip modules (MCM) and, more particularly, to a method for making engineering changes (EC's) in the electronic structure and/or repairing defective electrical connections in the MLTF structure and to the resulting MLTF structure and electronic component fabricated by the repair method.
2. Description of Related Art
Thin film electronic components offer an attractive packaging solution for high performance and light weight systems such as in computer, telecommunication, military and consumer applications. With the Semiconductor Industry Association (SIA) predicting clock frequencies in the range 200 MHz-1 GHz in the year 2000, the use for thin film packaging will continue to increase. Though thin films offer high density interconnections, the manufacturing process typically produces some number of non-working interconnections due to process induced defects and a resulting low component product output yield. To assure the quality and reliability of the product, the defective interconnections need to be repaired to ensure their functionality, so as to assure a fault free electronic package.
Package interconnections consist of multiple layers of interconnections which are used to interconnect various parts of the system. After all the layers of the MLTF are fabricated, a final test is performed from the top surface of the package to separate defective interconnects from defect-free interconnects to guarantee the functionality of the interconnects and the package. Since a fully functioning package cannot support any defective interconnects, the package must either be thrown away, which is not feasible for thin film packages due to the high cost involved, or the defective interconnects can be repaired. The repair option accordingly represents an attractive solution for thin film packages.
In the past, repair schemes such as Direct Distribution Engineering Change (DDEC) as shown in U.S. Pat. No. 5,243,140 has been used whereby a series of ‘add’ and ‘delete’ repair operations have been used on a fixed metal layout on the top surface of the MLTF structure. In general, the repair scheme utilizes two correction pads arranged in an array, at least two direct distribution structures, a signal pad and conductor extending between at least two direct distribution structures.
In U.S. Pat. No. 4,254,445 a module for LSI chips includes an orthogonal array of sets of pads and fan-out metallization for a large number of chips. Running parallel to the sides of the chips and the fan-out area are several parallel prefabricated, thin film engineering change (EC) interconnection lines terminating in pads adjacent to the fan-out. The pads are arranged to permit discretionary connections of the fan-outs to the EC pads with minimal crossovers by means of short fly wires.
U.S. Pat. No. 4,489,364 shows a chip carrying module including a number of EC change lines buried below the surface of the module. The EC lines are interrupted periodically to provide a set of vias extending up to the upper surface of the module between each set of chips where the vias are connected by dumbbell-shaped pads including a narrow link which permits laser deletion. The fan-out pads can be connected to the pads by means of fly-wires.
U.S. Pat. Nos. 5,220,490 and 5,224,022 show custom interconnections done by personalizing (not repairing) the top metal wiring. The customizable circuit has a high density of orthogonally placed X and Y conductors capable of interconnecting closely spaced LSI circuits.
The above patents are incorporated herein by reference.
A typical thin film structure containing a number of interconnections using vias, pads and connecting conductor straps is shown in cross-section
FIG. 1
as numeral
10
. The structure is typically mounted on a substrate (not shown) such as a ceramic material (MCM-D/C) containing wiring. The MLTF structure consists of a power plane (brick) or capture level
19
, mesh 1 level
11
, X wiring layer
12
, Y wiring layer
13
, ground plane mesh 2 layer
14
and a top surface metallurgy level (TSM)
15
. The top surface metallurgy (TSM) level contains the vias
16
, corresponding pads
17
and via-pad strap connectors
18
for connecting chips to the thin film package. The top surface metallurgy level would also contain the repair wires for correcting faulty interconnections or making EC's as discussed hereinbelow.
FIG. 2
, which represents a partial top view of a typical MCM and of the TSM metallization level
15
of
FIG. 1
shows one chip area bounded by the dotted lines
27
, vias
16
and chip connection pads
17
(such as controlled collapse chip connection pads known as C4 pads) with the vias representing connections to the I/O in the MLTF structure and supporting substrate if any and the C4 pads represent the microsockets supporting the C4 balls connecting the chip to the thin film substrate. As can be seen from the figure, the C4 pads
17
are offset from the vias
16
, which is preferable in high performance machines to ensure the elimination of any discontinuities which may arise due to the presence of the faulty interconnection still connected to the repaired wire. In the figure, the C4 pads are connected to the vias by conductor straps
18
that provide the connection for non-faulty interconnections. The strap is conventionally created by a mask during the fabrication of the TSM and if the interconnection is faulty, a laser delete operation is necessary to disconnect the faulty interconnection from the C4 pad. As will be more fully discussed hereinbelow, vias
16
a
and
16
b
were found to be part of defective interconnections and are not to be used. Corresponding pads
17
a
and
17
b
are shown connected to repair lines
30
R and
30
R′ by straps
18
R and
18
R′, respectively.
Bearing in mind the problems and deficiencies of the prior art, it is therefore an object of the present invention to provide a method for repairing interconnections and/or making engineering changes in multilayer thin film containing electronic components such as MCM's.
Another object of the invention is to provide a method for repairing interconnections and/or making EC's in multilayer thin containing film electronic components employed on top of ceramic, laminate, dielectric or other substrates.
A further object of the invention is to provide a MLTF structure having repair lines and/or EC lines made using the method of the invention.
A still further object of the invention is to provide a multi-chip module containing a MLTF structure having repair lines and/or EC lines made using the method of the invention.
Still other objects and advantages of the invention will in part be obvious and will in part be apparent from the specification.
SUMMARY OF THE INVENTION
The above and other objects, which will be apparent to those skilled in the art, are achieved by the present invention which relates to a method for repairing interconnections in multilayer thin film (MLTF) structures typically used to make multi-chip modules (MCM) by employing the MLTF structure on MCM's such as MCM-C (ceramic substrate), MCM-D (non-conductive substrate) and MCL-L (laminate substrate) comprising making the MLTF layer by layer up to a layer adjacent the top surface layer, determining the interconnection defects at the thin film layer below and adjacent to the top surface layer of the MLTF structure, defining the top surface connections needed to repair the defective interconnections based on the defects uncovered and/or EC's desired, preferably using a computerized algorithm to determine the best metal line routes on the top surface layer, defining by a photoresist technique the top surface layer to form the top surface metallization and a plurality of orthogonal X-Y repair lines and then connecting pads of vias needing repair by metal connecting line straps to an X repair line and/or a Y repair line and then connecting

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Inherently robust repair process for thin film circuitry... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Inherently robust repair process for thin film circuitry..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Inherently robust repair process for thin film circuitry... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3044389

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.