Infusion control system

Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S118000, C606S107000

Reexamination Certificate

active

06491661

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates generally to the field of cataract surgery and more particularly to an infusion control system for a phacoemulsification handpiece.
The human eye in its simplest terms functions to provide vision by transmitting light through a clear outer portion called the cornea, and focusing the image by way of the lens onto the retina. The quality of the focused image depends on many factors including the size and shape of the eye, and the transparency of the cornea and lens.
When age or disease causes the lens to become less transparent, vision deteriorates because of the diminished light which can be transmitted to the retina. This deficiency in the lens of the eye is medically known as a cataract. An accepted treatment for this condition is surgical removal of the lens and replacement of the lens function by an artificial intraocular lens (IOL).
In the United States, the majority of cataractous lenses are removed by a surgical technique called phacoemulsification. During this procedure, a thin phacoemulsification cutting tip is inserted into the diseased lens and vibrated ultrasonically. The vibrating cutting tip liquefies or emulsifies the lens so that the lens may be aspirated out of the eye. The diseased lens, once removed, is replaced by an artificial lens.
A typical ultrasonic surgical device suitable for ophthalmic procedures consists of an ultrasonically driven handpiece, an attached cutting tip, and irrigating sleeve and an electronic control console. The handpiece assembly is attached to the control console by an electric cable and flexible tubings. Through the electric cable, the console varies the power level transmitted by the handpiece to the attached cutting tip and the flexible tubings supply irrigation fluid to and draw aspiration fluid from the eye through the handpiece assembly.
The operative part of the handpiece is a centrally located, hollow resonating bar or horn directly attached to a set of piezoelectric crystals. The crystals supply the required ultrasonic vibration needed to drive both the horn and the attached cutting tip during phacoemulsification and are controlled by the console. The crystal/horn assembly is suspended within the hollow body or shell of the handpiece by flexible mountings. The handpiece body terminates in a reduced diameter portion or nosecone at the body's distal end. The nosecone is externally threaded to accept the irrigation sleeve. Likewise, the horn bore is internally threaded at its distal end to receive the external threads of the cutting tip. The irrigation sleeve also has an internally threaded bore that is screwed onto the external threads of the nosecone. The cutting tip is adjusted so that the tip projects only a predetermined amount past the open end of the irrigating sleeve. Ultrasonic handpieces and cutting tips are more fully described in U.S. Pat. Nos. 3,589,363; 4,223,676; 4,246,902; 4,493,694; 4,515,583; 4,589,415; 4,609,368; 4,869,715; 4,922,902; 4,989,583; 5,154,694 and 5,359,996, the entire contents of which are incorporated herein by reference.
In use, the ends of the cutting tip and irrigating sleeve are inserted into a small incision of predetermined width in the cornea, sclera, or other location. The cutting tip is ultrasonically vibrated along its longitudinal axis within the irrigating sleeve by the crystal-driven ultrasonic horn, thereby emulsifying the selected tissue in situ. The hollow bore of the cutting tip communicates with the bore in the horn that in turn communicates with the aspiration line from the handpiece to the console. A reduced pressure or vacuum source in the console draws or aspirates the emulsified tissue from the eye through the open end of the cutting tip, the cutting tip and horn bores and the aspiration line and into a collection device. The aspiration of emulsified tissue is aided by a saline flushing solution or irrigant that is injected into the surgical site through the small annular gap between the inside surface of the irrigating sleeve and the cutting tip.
The preferred surgical technique is to make the incision into the anterior chamber of the eye as small as possible in order to reduce the risk of induced astigmatism. These small incisions result in very tight wounds that squeeze the irrigating sleeve tightly against the vibrating tip. Friction between the irrigating sleeve and the vibrating tip generates heat, but the risk of the tip overheating and causing a burn to the tissue is reduces by the cooling effect of the aspirated fluid flowing inside the tip. When the tip becomes occluded with tissue, this aspiration flow can be reduced or eliminated, allowing the tip to heat up.
Prior art devices have used sensors that detect large rises in aspiration vacuum, and predict occlusions based on vacuum rise. Based on this sensed occlusion, power to the handpiece may be reduced and/or irrigation and aspiration flows can be increased. See U.S. Pat. Nos. 5,591,127, 5,700,240 and 5,766,146 (Barwick, Jr., et al.), the entire contents of which being incorporated herein by reference. Increased vacuum levels in the aspiration line, however, do not necessarily indicate that the flow of cooling fluid around the tip has been cut off. Even with the tightest incisions, some irrigating fluid will leak out between the wound and the outside of the irrigating sleeve. The wound leakage also provides additional cooling flow to the incision site, and measuring rises in aspiration vacuum alone does not necessarily indicate that a potential for a corneal burn exists. Therefore, power to the handpiece may be interrupted prematurely.
Prior art devices have also used gravity fed methods or pressurized gas sources for controlling surgical infusion pressure and flow. Gravity feed infusion methods, such as those illustrated in
FIG. 8
, provide a pressure and flow based on the height of a column of liquid. The higher the column, the greater the pressure and flow. The lower the column, the lower the pressure and flow. The surgeon controls the column height by raising or lowering the infusion bottle. Pressurized gas sources, such as those illustrated in
FIG. 9
, control the infusion pressure by increasing or decreasing the pressure inside the infusion bottle. The bottle is suspended at a constant height and a gas pressure pump is connected to the bottle. See U.S. Pat. Nos. 4, 813,927, 4,900,301, 5,032,111 and 5,047,009(Morris, et al.), the entire contents of which being incorporated herein by reference. Gravity feed methods have limitations on pressure response rates due to the requirements of raising and lowering the infusion bottle. Pressurized gas methods improve on the response rates but require cumbersome venting snorkel devices that complicate the surgical setup. Both methods require filtering of air or gas into the bottle to prevent contamination which is added cost and complexity
Therefore, a need continues to exist for an infusion source for a surgical applications that utilizes a better method of infusion pressure and flow.
BRIEF SUMMARY OF THE INVENTION
The present invention improves upon the prior art by providing an infusion system having a flexible, collapsible infusion container. The container can be compressed between rollers or plate so as to pressurize the container. Such a system allows for rapid pressure response rates without the need of venting devices or air filtering. The may also include an irrigation flow sensor. The sensor may be placed in the control console or in the infusion handpiece. Irrigation flow measurements provided by the sensor allows the control system to vary irrigation pressure and/or flow, aspiration pressure and/or flow and power supplied to the handpiece more accurately than sensors that monitor aspiration flow.
Accordingly, one objective of the present invention is to provide a surgical console control system.
Another objective of the present invention is to provide a surgical console control system having irrigation flow sensing capability.
Another objective of the present invention is to provide a surgical con

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Infusion control system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Infusion control system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Infusion control system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2948425

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.