Radiant energy – Radiant energy generation and sources – With radiation modifying member
Reexamination Certificate
1999-08-18
2001-07-17
Nguyen, Kiet T. (Department: 2881)
Radiant energy
Radiant energy generation and sources
With radiation modifying member
C250S493100
Reexamination Certificate
active
06262431
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a spheroidally emitting infrared emitter with a sheathing bulb that surrounds a radiation source provided with electrical connections.
2. Discussion of the Background
Such infrared emitters are used for local heating, for example in medicine, for therapeutic treatment of specific points, or in areas which are difficult to access, for local heating of carrier materials made of molded plastic parts, such as interior door panels in passenger car production, as well as similar industrial applications, such as deep-drawing processes. Frequently, spherical or spheroidal emission of the infrared radiation is an aim in such applications.
In a known infrared emitter, such spheroidal emission is achieved by means of a spherical or hemispherical sheathing bulb, which is made of a ceramic material that gives off infrared radiation. The radiation source is arranged inside the sheathing bulb, and heats the latter. In industrial applications, rapid temperature changes are frequently necessary, but because of the thermal inertia of the sheathing bulb, they cannot be achieved using the known infrared emitter. Furthermore, the known infrared emitter is only suitable for low output density.
SUMMARY OF THE INVENTION
The invention is therefore based on the task of indicating a spheroidally emitting infrared emitter which demonstrates low thermal inertia and which can be used to achieve high radiation output.
This task is accomplished according to the invention, starting from the infrared emitter described initially, in that the radiation source comprises a first radiation strip that is bent along its lengthwise axis in such a way that it has a top, convex, curved flat side.
In the infrared emitter according to the invention, spheroidal emission is achieved in that the radiation source itself has an approximately spheroid shape. For this purpose, the radiation source, in its simplest form, comprises a first, bent radiation strip. The radiation strip emits radiation primarily in the direction of its flat sides. The top flat side is curved in convex shape, forming a segment of the curved surface of a spherical segment or a spheroid segment. The bend can be structured, for example, in the shape of a “U,” a circular segment, or in the form of a simple spiral, similar to a looping shape. It is essential that spheroid emission to the outside is achieved by the curvature of the top flat side, at least as a first approximation. The radiation strip can also be twisted around its lengthwise axis, in addition to the convex curvature. The peak of the curvature generally lies in the region of the lengthwise axis of the infrared emitter.
In an ideal case, spheroid emission has the shape of a rotation ellipsoid or a part of such a rotation ellipsoid. Here, spherical emission in the form of emission which has the shape of a spherical segment in an ideal case, for example hemispherical emission, is understood to be a special case of spheroidal emission. For the sake of simplicity, in the following only spheroidal emission or a spheroidal shape of the radiation strip will be discussed, where this is understood to include hemispheroidal, spherical or hemispherical emission and/or radiation strip shapes.
In many applications, slight deviations from the stated ideal shapes are acceptable; it is sufficient if at east partially spheroid emission is obtained. Such emission that deviates from the ideal case is also the object of the present invention.
Because the radiation source comprises a radiation strip that has a relatively small mass, because of its geometry, rapid temperature changes are made possible. The lower the specific heat capacity of the radiation strip material and the thinner the radiation strip, the faster the temperature changes that are possible. Typical materials for the radiation strip are metal, carbon, or conductive ceramics.
The curvature of the radiation strip also contributes to a high temperature change strength of the radiation source. This is because length changes due to thermal expansion or contraction can be easily compensated by the curvature. This allows operation of the radiation element at high output density.
An embodiment of the infrared emitter in which the first radiation strip runs in a first curvature plane, and has a peak point in the region of the lengthwise axis of the infrared emitter, has particularly proven itself. By having a peak point of the curvature in the region of the lengthwise axis of the infrared emitter, the symmetry of the emitter, and that of the sheathing bulb, are brought into agreement with that of the radiation strip. The first curvature plane is defined by the center axes of the two free shanks of the bent radiation strip.
In this connection, sufficient approximation to spheroid emission is achieved in particularly simple manner, in that the first radiation strip is bent in U shape or semicircular shape in the first curvature plane. Here, a U-shaped bend is also understood to be a bend which is horseshoe-shaped in cross-section.
A radiation strip made of a carbon strip has particularly proven itself. The carbon strip is usually formed by a plurality of carbon fibers that run parallel to one another. It is characterized by low heat capacity, so that particularly rapid temperature changes are possible using such a strip. In addition, the carbon strip is characterized by a high specific emission coefficient for infrared radiation, so that high radiation energies can be achieved with a radiation strip structured in this way, even at relatively low mean color temperatures. The mean color temperatures of the carbon strip are in the range between 1100° C. and 1200° C. under normal operating conditions. The full radiation output is generally available within a few seconds after the emitter has been turned on. For the infrared emitter according to the invention, this time span is typically only 1 to 2 seconds.
Particularly with regard to rapid temperature changes, a radiation strip in the form of a carbon strip with a thickness in the range of 0.1 mm to 0.2 mm, and with a width in the range of 5 mm to 8 mm, has proven to be advantageous.
It is advantageous if the two free ends of the first radiation strip are held in or on a carrier element made of electrically insulating material. This guarantees good shape stability of the radiation strip. It can therefore be made very thin. The ends of the radiation strip can be attached to the carrier element directly or via intermediate elements. At the same time, the carrier element can serve to attach the electrical connectors and for electrically connecting them with the radiation strip.
In this regard, a carrier element that comprises a ceramic disk provided with a groove to hold a pinch for passing the electrical connections through under a vacuum seal, and with passage bores for the electrical connections, has particularly proven itself.
Another approximation to ideal spheroid emission is achieved by an embodiment of the infrared emitter according to the invention in which the radiation source comprises a second radiation strip, which is bent along its lengthwise axis in such a way that it has a top, convex, curved flat side, where the second radiation strip runs in a second curvature plane, and has a peak point in the region of the lengthwise axis of the infrared emitter, which is at a distance from the peak point of the first radiation strip. The advantages of the holder arrangement and the curvature of the radiation strip with regard to its temperature change strength and the accompanying “thermal rapidity” were already explained above. The second radiation strip allows operation of the infrared emitter at a particularly high output density. Furthermore, the spherical geometry of emission is improved, since the two radiation strips can each produce different segments of the desired spherical or spheroid emission, if the individual curvature planes intersect. The first and the second radiation strip can be structured in identical manner, exc
Hennecke Udo
Scherzer Joachim
Heraeus Noblelight GmbH
Nguyen Kiet T.
Oblon & Spivak, McClelland, Maier & Neustadt P.C.
LandOfFree
Infrared spheroidal radiation emitter does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Infrared spheroidal radiation emitter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Infrared spheroidal radiation emitter will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2495830