Radiant energy – Invisible radiant energy responsive electric signalling – Infrared responsive
Reexamination Certificate
2006-07-07
2009-06-16
Porta, David P (Department: 2884)
Radiant energy
Invisible radiant energy responsive electric signalling
Infrared responsive
Reexamination Certificate
active
07547886
ABSTRACT:
An organic material can be used in a modified strain gauge for IR transduction, resulting in an organic IR sensor. Infrared radiation incident on the organic material modulates a displacement of the material in order to detect the presence and intensity of IR radiation. This innovative design doesn't require cooling, and is sensitive to 9 and 3 μm—wavelengths that are emitted by mammals and forest fires, respectively. In addition, a photomechanical polymer can be used in a transistor based on a thin-film transistor (TFT), also resulting in an IR sensor. Through careful synthesis of the polymers, the photomechanical response of the transistor can be tailored to certain IR bands for detection purposes.
REFERENCES:
patent: 4937550 (1990-06-01), Tawada et al.
patent: 5182624 (1993-01-01), Tran et al.
patent: 5389788 (1995-02-01), Grinberg et al.
patent: 5488226 (1996-01-01), Iafrate et al.
patent: 5512750 (1996-04-01), Yanka et al.
patent: 5585646 (1996-12-01), Kossovsky et al.
patent: 5696377 (1997-12-01), Kanzaki
patent: 5794889 (1998-08-01), Bailey
patent: 5891581 (1999-04-01), Simpson et al.
patent: 5917226 (1999-06-01), Chan et al.
patent: 6739199 (2004-05-01), Nikkel
patent: 2004/0007076 (2004-01-01), Riddering et al.
patent: 2005/0110091 (2005-05-01), Yamazaki et al.
patent: 2005/0130360 (2005-06-01), Zhan et al.
patent: 07330809 (1995-12-01), None
R. Kumar, “A review of chitin and chitosan applications”, Nov. 2000, Reactive and Functional Polymers, vol. 46, No. 1, pp. 1-27.
Hautamaki et al., “Experimental Evaluation of MEMS Strain Sensors Embedded in Composites”, 1999 IEEE, Journal of Microelectromechanical Systems, vol. 8, No. 3, pp. 272-279.
A.L. Andrady et al. Elastic Behavior of Chitosan Films. J. Polym. Sci. Part B: Polymer Physics, vol. 35, pp. 517-521 (1997).
H. Bleckmann et al. Nature as a model for technical sensors. J. Comp. Physiol. A, vol. 190, pp. 971-981 (2004).
A.L. Campbell et al. Biological infrared imaging and sensing. Micron, vol. 33, pp. 211-225 (2002).
G. Cardenas et al. Chitan chracterization by SEM, FTIR, XRD, and 13C Cross Polarization/Mass Angle Spinning NMR. J. Appl. Polym. Sci., vol. 93, pp. 1876-1885 (2004).
Dalwoo Corp. Spectra of chitan/chitosan. http://members.tripod.com/˜Dalwoo/spectra.htm. Apr. 1999.
P.G. Datskos et al. Performance of uncooled microcantilever thermal detectors. Review of Scientific Instruments, vol. 75, pp. 1134-1148 (2004).
M.H. Dickinson. Bionics: Biological insight into mechanical design. PNAS, vol. 96 (1999).
C.D. Dimitrakopoulos et al. Organic thin-film transistors: A review of recent advances. http://www.research.ibm.com/journal/rd/451/dimitrakopoulos.html, IBM Journal of Research and Development, Jan. 2001.
L. Dong et al. Fabrication and characterization of integrated uncooled infrared sensor arrays using a-Si thin-film transistors as active elements. J. Microelectromech. Syst., vol. 14, pp. 1167-1177 (2005).
G.C. East et al. Wet spinning of chitosan and the acetylation of chitosan fibers. J. Appl. Polym. Sci., vol. 50, pp. 1773-1779 (1993).
W.P. Eaton et al. Micromachined pressure sensors: Review and recent developments. Smart Material Structures, vol. 6, pp. 530-539 (1997).
M. Esashi et al. Vacuum-sealed silicon micromachined pressure sensors. Proc. IEEE, vol. 86, No. 6, pp. 1627-1639 (1998).
W.G.Evans. Infrared radiation sensors ofMelanophila acuminata(Coleoptera:Buprestidae): A thermopneumatic model. Ann. Entomol. Soc. Am., vol. 98, pp. 738-746 (2005).
W.G. Evans. Morphology of the infrared sense organs ofMelanophila acuminata(Buprestidae: Coleoptera). Ann. Entomol. Soc. Am., vol. 59, pp. 837-877 (1966).
W.G. Evans. Perception of infrared radiation from forest fires byMelanophila acuminatade Geer (Buprestidae, Coleoptera). Ecology, vol. 47, pp. 1061-1065 (1966).
W.G. Evans. Infra-red receptors inMelanophila acuminataDeGeer. Nature, vol. 202, pp. 211 (1964).
R. Fernandes et al. Thermo-biolithography: A technique for patterning nucleic acids and proteins. Langmuir, vol. 20, No. 3, pp. 906-913 (2004).
M.A. Fonseca et al. Wireless micromachined ceramic pressure sensor for high-temperature applications. J. Microelectromech. Syst., vol. 11, No. 4, pp. 337-343 (2002).
H. Gleskova et al. Electrical response of amorphous silicon thin-film transistors under mechanical strain. J. Appl. Phys., vol. 92, pp. 6224-6229 (2002).
D.X. Hammer et al. Investigation of the transduction mechanism of infrared detection inMelanophila acuminata: Photo-thermal-mechanical hypothesis. Comp. Biochem. and Physiol. Part A, vol. 132, pp. 381-392 (2002).
D.X. Hammer et al. Sensitivity threshold and response characteristics of infrared deteection in the beetleMelanophila acuminata(Coleophtera:Buprestidae). Comp. Biochem. and Physiol. Part A, vol. 128, pp. 805-819 (2001).
D.X. Hammer et al. Infrared spectral sensitivity ofMelanophila acuminata. J. Insect Physiol., vol. 47, pp. 1441-1450 (2001).
C. Hautamaki et al. Experimental evaluation of MEMS strain sensors embedded in composites. J. Microelectromech. Syst., vol. 8, No. 3, pp. 272-279 (1999).
J. Hazel et al. Ultramicrostructure and microthermomechanics of biological IR detectors: Materials properties from a biomimetic perspective. Biomacromolecules, vol. 2, pp. 304-312 (2001).
P.I. Hsu et al. Thin-film transistor circuits on large-area spherical surfaces. Appl. Phys. Lett., vol. 81, pp. 1723-1725 (2002).
K. Ivanova et al. Micromachined arch-type cantilever as high sensitivity uncooled infrared detector. J. Vac. Sci. Technology B, vol. 23, pp. 3153-3157 (2005).
E. Khor et al. Reversible water-swellable chitin gel. J. Polym. Sci. Part A: Polymer chemistry, vol. 35, No. 10, pp. 2049-2053 (2000).
J.Z. Knaul et al. Crosslinking of chitosan fibers with dialdehydes: Proposal of a new reaction mechanism. J. Polym. Sci. Part B: Polymer Physics, vol. 37, pp. 1079-1094 (1999).
M.N.V.R. Kumar. A review of chitin and chitosan applications. React. Funct. Polym., vol. 46, pp. 1-27 (2000).
L.P. Lee et al. Inspirations from biological optics for advanced photonic systems. Science, vol. 310, pp. 1148-1150 (2005).
M. Lei et al. High-resolution technique for fabricating environmentally sensitive hydrogel microstructures. Langmuir, vol. 20, pp. 8947-8951 (2004).
M.C. LeMieux et al. Polymeric nanolayers as actuators for ultrasensitive thermal bimorphs. Nano Letters, vol. 6, pp. 730-734 (2006).
B. Li. Design and simulation of an uncooled double-cantilever microbolometer with the potential for ˜mK NETD. Sensors and Actuators A: Physical, vol. 112, pp. 351-359 (2004).
L. Lin et al. A micro strain gauge with mechanical amplifier. J. Microelectromech. Syst., vol. 6, No. 4, pp. 313-321 (1997).
Y. Lin et al. Trilayer ceramic-metal-polymer microcantilevers with dramatically enhanced thermal sensitivity. Advanced Materials, vol. 18, pp. 1157-1161 (2006).
J.M. Lippmann. Design and fabrication of MEMS resonant strain sensor in SOI. Master's Thesis, University of California, Berkeley (2004).
X.L.J. Luo et al. Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application. Chem. Comm., vol. 16, pp. 2169-2171 (2005).
W.H. Nosal et al. UV-vis-infrared optical and AFM study of spin-cast chitosan films. Colloids Surf. B: Biointerfaces, vol. 43, Nos. 3-4, pp. 131-137 (Jul. 2005).
J. Nunthanid et al. Physical properties and molecular behavior of chitosan. Drug Dev. Ind. Pharm., vol. 27, No. 2, pp. 143-157 (2001).
P.L. Richards. Bolometers for infrared and millimeter waves. J. Appl. Phys., vol. 76, No. 1, pp. 1-24 (1994).
A. Rogalski et al. Infrared devices and techniques. Opto-electronics Review, vol. 10, pp. 111-136 (2002).
A. Rogalski. Infrared detectors at the beginning of the next millennium. Proc. SPIE Int. Soc. Opt. Eng., vol. 4413, pp. 307-322 (2001).
K.R. Sarma et al. Active matrix OLED using a 150° C. a-Si TFT backplane built on flexible plastic substrate in flexible flat panel displays. Presented at SPIE Symposium on Aerospace/Defense Sensing, Orlando, Florida, Apr. 2003.
H. Schmitz et al. Responses of the infrared sensilla ofMela
Cauley, III Thomas H.
Cheng Jim
Mueller Michael
Pisano Albert
Kim Kiho
O'Banion John P.
Porta David P
The Regents of the University of California
LandOfFree
Infrared sensor systems and devices does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Infrared sensor systems and devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Infrared sensor systems and devices will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-4089888