Adhesive bonding and miscellaneous chemical manufacture – Methods – Surface bonding and/or assembly therefor
Reexamination Certificate
1998-11-12
2001-05-01
Sells, James (Department: 1734)
Adhesive bonding and miscellaneous chemical manufacture
Methods
Surface bonding and/or assembly therefor
C156S073100
Reexamination Certificate
active
06224699
ABSTRACT:
CROSS REFERENCE TO RELATED APPLICATIONS
Not Applicable
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable
FIELD OF THE INVENTION
This invention relates to an improved inspection and quality level sensing system for use during processing of webs such as paper, film, composites, or the like, in dynamic continuous processing operations. More particularly, the invention relates to sensing and assessing the location and quality condition of features, characteristics, and elements characteristic of personal care articles or precursors of such articles on an article fabrication line. The invention can sense and assess, for example, the location and quality of respective components, the location and quality of ultrasonic or thermal bonding, and/or the location and amount of adhesives present in a web of personal care article precursors during the fabrication of such personal care article precursors from suitable raw material inputs.
BACKGROUND OF THE INVENTION
In assembling various elements on an e.g. endless web to make personal care articles, it is highly desirable to have a real-time inspection of various aspects of the articles being fabricated, including inspection of the articles at one or more locations on the fabrication line, as the articles are being fabricated and before fabrication is complete.
In the personal care article industry, it is known to use optical brighteners to mark components or portions of elements which form such articles in a fabrication line. When such optical brighteners are properly selected, properly applied, and properly positioned, the articles can be illuminated with ultraviolet light and/or visible light. Ultraviolet and visible light sensors can sense the optical brighteners so illuminated, and can thus record the positions, or relative positions, of components carrying such optical brighteners in such personal care articles. While some article elements can thus be detected, to applicants' knowledge, it is not known to employ such procedures to assess presence and quality of adhesive or other bonds or bonding in the context of a personal care article.
In addition, applicants are aware that some, but not necessarily all, hot melt adhesives inherently fluoresce under ultraviolet light. However, applicants are not aware of any use of such property for detecting relative positioning of elements.
In other methods of assessing or predicting product quality, structural elements such as notches, slits, slots, protrusions, depressions, or holes or the like are formed in the web of personal care articles, thus to provide a detectable structural feature which can be used to sense location of an element.
A region of magnetic discontinuity, electromagnetic discontinuity, or any combination thereof may also be used with suitable sensors of magnetic properties to show the positions of components of respective personal care articles.
The above methods of assessing or predicting product quality require modifying the personal care articles specifically for the purpose of being able to sense or detect the parameters of interest, such as for example using additional material such as an optical brightener, or a magnetic additive, or modifying the structure of the personal care articles, in order to create an element detectable by the sensors selected for the detection function. Such modifications increase the cost of personal care articles, in addition to bearing the cost of the actual detection. Further, use of such additional material, elements, or features includes the risk that the additional material, elements, or features, may be misplaced in the web, or on the respective web element, and thus give a false reading to the sensing system. There is also the risk that such modification to the product or product component may interfere with either the intended use of the personal care article or the safety of a person using the personal care article for the intended use.
It would be desired that no such additional material element, or feature, need be incorporated into or added to any element or feature of the articles being fabricated.
SUMMARY OF THE DISCLOSURE
In the invention, process heat with which the workpiece elements are inherently imbued by the process, is detected by one or more infrared sensors which sense the thermal condition inherent in a plurality of characteristics of respective features of the personal care articles being formed, and wherein the features so sensed generally have primary utility in the typical functioning of the article, and are not incorporated into the article merely to assist in the sensing operation. Characteristics which are sensed are, for example, individual components, and parts of components, of the personal care article, ultrasonic bonds, and adhesive at bonds. With proper resolution in a display of the properties so sensed, sensing such elements can pinpoint or show the exact location of such individual components, or adhesive, or ultrasonic or other thermally-formed bonds. The sensed information can be compared to stored or other reference information to determine whether or not the respective components or bonds are disposed at desired or specified locations on respective personal care articles.
The sensed information also can be compared with stored or other reference information to determine whether or not the qualities or strengths of ultrasonic bonds are effective to maintain the structural integrity of the respective personal care articles.
Further, the sensed infrared information can be compared with stored or other reference information to determine whether or not a sufficient quantity of adhesive, such as hot melt adhesive, has been applied to the personal care articles being fabricated and whether or not such adhesive has been properly distributed, in the proper relationships, on the respective components of the personal care articles.
The above comparisons can be reported to a fabrication line operator whereby the operator can monitor ongoing conformity with, or variance from, reference or other specified parameters. Variance outside specified tolerances can trigger an alarm to warn the operator that a malfunction has occurred. Further, the above comparisons can be used to cull unacceptable units of product from the personal care article fabrication line. Information from the above comparisons can also be used to shut down the processing line at certain predetermined levels of variance from specified parameters.
A significant advantage of the invention is that infrared sensors can sense the location of elements which are not readily susceptible to detection from the outside of the personal care article using sensors operating in the visible or ultraviolet wavelengths. Because of use of the infrared spectrum, the infrared system can see elements or components through one or more layers of material which are opaque to visible and/or ultraviolet light. Thus, assuming an infrared energy source, an infrared sensor can “see through” e.g. cover layers or bodyside liners of material and can display visual images of elements or components thus “seen” or detected on the interior of the personal care article. In this manner, partially or fully assembled personal care articles can be viewed or inspected for defects which may be disposed under a visually opaque element. Processing apparatus, such as a digital computer, can process the received information and compare the information with reference or otherwise known tolerances and physical values for the various components, and positions of components.
The infrared sensor typically comprises a passive infrared sensor that senses, in the personal care article work product, or work product precursor, heat that is normally inherently present in the personal care article or work product or precursor as a result of the process of assembling such work product or precursor. The heat results from, for example, ultrasonic bonding, the application of hot melt adhesive to various components of personal care articles, and residual heat otherwise develo
Bett Thomas Arthur
Krueger-Justinger Jean Louise
Ungpiyakul Tanakon
Kimberly--Clark Worldwide, Inc.
Sells James
Seurer Jerad G.
Wilhelm Thomas D.
LandOfFree
Infrared imaging to detect components on personal care articles does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Infrared imaging to detect components on personal care articles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Infrared imaging to detect components on personal care articles will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2536839