Information system

Communications: directive radio wave systems and devices (e.g. – Directive – Including a satellite

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C342S357490

Reexamination Certificate

active

06650284

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to navigation information systems. It is particularly suitable for use in providing users of road vehicles with route guidance, but other applications are possible and are discussed below.
2. Related Art
Navigation of a vehicle through an unfamiliar complex road network is a difficult task. Large amounts of fuel and time are wasted as a result of drivers getting lost or using an inefficient route. Accidents can also be caused by drivers attempting so read maps or complex road signs and losing concentration on the road ahead. Moreover, a driver may choose an inefficient route as a result of using an out-of-date map.
An additional problem car occur even if a driver knows a route to his or her destination. That route may be congested or blocked as a result of accidents or maintenance work, so that an alternative route would be more efficient.
Several proposals have been made for navigation guidance systems. In some such proposals a vehicle-borne system has a navigation computer and a geographical information system which is essentially a digitised map stored on a CD-ROM. The system gives the driver information and guidance by screen and/or speech display. These systems would be very expensive. Each vehicle requires a navigation computer and geographical information system. The cost of the complex vehicle-borne equipment involved is estimated to be in the region of £1000. The system is complex to operate, and could only be safely operated by the driver whilst the vehicle is stationary. The geographical information system would require periodic updating, which requires new disks to be distributed to subscribers from time to time.
In some proposed systems of this type real-time data would be broadcast over a radio network to update fixed information held on the geographical information system. Even so, the geographical information system would only be accurate up to its last update. Moreover, a broadcast channel needs to be allocated for the updating service.
It has also been proposed that the guidance service provider collects statistical traffic flow data from which traffic congestion predictions can be made which are fed into the real-time data to be broadcast. The traffic flow data may be collected using roadside sensors, or they may be collected by monitoring the operation of the mobile user equipment. The latter approach can only collect data relating to users of the system, but has a lower capital cost.
In an alternative approach a system of short-range roadside beacons is used to transmit guidance information to passing vehicles equipped with simple transceivers. The beacons transmit information to suitably equipped passing vehicles to give turn instructions appropriate to their chosen destinations. For each beacon the territory to be covered is divided into as many zones as there are exits from the junction the beacon relates to. The zone in which the user's chosen destination falls is determined, and instructions are given appropriate to that zone. At any given beacon all vehicles whose destinations are in the same zone get the same instruction. The definitions of the zones are dependant on the location of the beacons, and each zone comprises the set of destinations which should be reached from the beacon by taking the direction associated with that zone.
Each beacon only gives instructions for reaching the next beacon along the route to the vehicle's destination. For two vehicles starting from the same point for different destinations for which the routes are initially coincident, the beacons along the coincident section of route will each give both users the same instructions, because for those beacons both users are travelling to the same zone. Only for the beacon at the point of divergence are the two users' destinations in different zones, and therefore different instructions are given.
The beacons' programming may be modified from time to time by control signals from a central control station, in a way analogous to remotely controlled adjustable signposts, but in its interactions with the user equipment the beacon is autonomous, identifying which of its zones the user's desired destination is in, and transmitting the appropriate “turn” information to get it to the next beacon on the way. The beacon has no knowledge of the rest of the route.
Each beacon has a detailed map of a small local area (the boundaries of which are, in fact, the adjacent beacons), and if the destination is in this area the beacon gives full information of the route to the destination. The system can therefore provide a user with directions to a destination defined more precisely than the beacon spacing. However, at the beginning of a journey, a user cannot use the system until he encounters a beacon.
This proposed system allows instant updating of the guidance instructions from a central control, and simpler in-vehicle equipment, but requires vast capital expenditure in roadside beacons.
A problem encountered with both the proposed systems described above is that it is difficult for them to provide alternative routings in response to congestion, either current or future, without the risk of creating worse problems on the alternative routes. Although predictions of regularly occurring congestion peaks are relatively simple to programme into the guidance information, and, at least in the beacon system, real-time updates on road congestion can also be fed to the programming of the beacons, the control system does not have any information of vehicle movements from which to predict future congestion. In any case, if the system is in use by a significant fraction of the vehicles, the system will tend to produce congestion on the diversionary routes.
SUMMARY OF THE INVENTION
A navigation information provides information to a mobile user dependant on the location of the mobile user is provided. The system includes a mobile communications system having a fixed part and one or more mobile part for communicating with the fixed part, the one or more mobile part including means for transmitting to the fixed part a request for guidance information and for receiving guidance information from the fixed part, and the fixed part including:
means for determining the location of a mobile part requesting guidance information,
means for generating guidance information according to the location of the mobile part, and
means for transmitting the guidance information so generated to the mobile part,
whereby information dependant on the location of the mobile unit can be transmitted to the mobile unit.
The exemplary navigation information system is one wherein the fixed part includes means for determining the location of the mobile part in relation to a geographical overlay comprising a plurality of overlay areas, and means for transmitting information associated with an overlay area which includes the location of the mobile part, whereby a mobile part within that overlay area receives information associated with that overlay area.
The exemplary navigation information system includes means for storing a digital representation of the geographical overlay, and means for modifying the stored representation such that the configurations of the overlay areas may be selected to meet changing requirements.
The exemplary navigation information system includes means for determining when a mobile part enters a predetermined overlay area, and means for transmitting a message to the mobile part, in response to the mobile part entering the predetermined overlay area.
The exemplary navigation information system includes means for determining when a mobile part enters a predetermined overlay area, and means for transmitting a message, to a user other than the said mobile part in response to the said mobile part entering the predetermined overlay area.
The exemplary navigation information system includes means to store a value associated with the mobile part, and means arranged to modify the stored value in response to the messag

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Information system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Information system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Information system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3183945

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.