Information remote monitor (IRM) medical device

Surgery – Diagnostic testing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C128S903000, C128S904000, C607S032000

Reexamination Certificate

active

06805667

ABSTRACT:

FIELD OF THE INVENTION
The present invention generally relates to medical devices. Specifically, the invention relates to an interface device implemented to telemetrically and wirelessly transmit physiologic and cardiac data obtained from one or more implantable medical devices (IMDs). More specifically, the invention relates to an information remote monitor (IRM) medical device, having data communications with the IMDs and a remote computer/server that is accessible by Medtronic, Inc. and other care providers to seamlessly and continuously transfer data and enable remote monitoring and management of patients with chronic disease. Preferably, the IRM is placed in the patient's home/room to access the IMD and transmit stored data via various data transmission schemes to a remote server or other expert centers.
BACKGROUND OF THE INVENTION
The present invention relates generally to telemetry systems for uplink and downlink telemetry transmission between at least one implantable medical device and an IRM. The IRM is implemented to overcome the problems encountered in providing patient services that are generally limited to in-hospital operations.
Prior art methods of reviewing patient data and conducting clinical follow-ups on patients with one or more IMDs, requires a patient to go to a clinic or hospital. Further, if the medical condition of a patient with an IMD warrants a continuous monitoring or adjustment of the device, the patient would have to stay in a hospital indefinitely. Such a continued treatment plan poses both economic and social problems. Under the exemplary scenario, as a segment of the population with IMDs increases, many more hospitals/clinics, inlcuding service personnel will be needed to provide in-hospital service for the patients, thus escalating the cost of health care. Additionally, the patients would be unduly restricted and inconvenienced by the need to either stay in the hospital or make very frequent visits to a clinic.
Yet another condition of the prior art practice requires that a patient visit a clinic center for occasional retrieval of data from the IMD to assess the operation of the device and gather patient history for both clinical and research purposes. Further, if a patient with IMDs is taking a drug, it is often clinically prudent to monitor the dose and its impact on the performance of the IMD. Furthermore, the IMD may be adapted to monitor the patient's drug intake, compliance and effectiveness by directly measuring the dose of the drug in the patient. Normally, such data is acquired by having the patient in a hospital/clinic to download the stored data from the IMD or by direct examination, such as, for example, a blood test. Depending on the frequency of data collection, this procedure of assessing a chronic condition of a patient with IMDs may pose serious difficulty and inconvenience for patients who live in rural areas or have limited mobility.
Current practice in the art involves the use of an external programming unit for non-invasive communication with IMDs via uplink and downlink communication channels associated with the programmers. In accordance with conventional medical device programming systems, a programming head is used for facilitating two-way communication between IMDs and the programmer. In many known implanted IMD systems, a programming head is positioned on the patients body over the IMD side such that one or more antennae within the head can send RF signals to, and receive RF signals from, an antenna disposed within the hermetic enclosure of the IMD or disposed within the connector block of the IMD in accordance with common practice in the art. As was indicated hereinabove, procedures that require downlink and uplink using programmers require that the patient be present at the hospital or clinic. A programmer of this type is described in more detail in U.S. Pat. No. 5,345,362 issued to Thomas J. Winkler, entitled PORTABLE COMPUTER APPARATUS WITH ARTICULATING DISPLAY PANEL, which patent is hereby incorporated herein by reference in its entirety.
In the context of the present invention, programmers are complicated and expensive units to deploy in patients' homes to implement a highly distributive chronic patient monitoring and management. Notwithstanding, more recently, it has been proposed to provide communication systems for IMDs in which the programming head is eliminated and communication occurs directly between the IMDs and the programmer located some distance from the patient. Such programmers still require the patient to be within telemetry range and therefore are not compatible with a remote patient management. Such systems are disclosed in U.S. Pat. No. 5,404,877 to Nolan et al, and U.S. Pat. No. 5,113,869 to Nappholz. In the Nappholz patent, in particular, broadcasting RF signals from an IMD to a programmer that may be located some feet away from the patient, is suggested. Such a communication system is also disclosed in U.S. patent application Ser. No. 09/303,178 for A TELEMETRY SYSTEM FOR IMPLANTABLE MEDICAL DEVICES, filed Apr. 30, 1999 by Villaseca et al, which application is incorporated herein by reference in its entirety.
In the context of remote communication relating to IMD data transfer and exchange, for example, U.S. Pat. No. 3,769,965 issued to Raddi et al, discloses a monitor apparatus for implanted pulse generator. Specifically, a monitor apparatus is disclosed for monitoring electrical stimulation signals due to either natural or artificial electrical stimulation of a body part via a communication link such that the repetition rate of the electrical stimulation signals can be determined. The monitor apparatus comprises the subsystems: a transducer; a communication link or network; and a receiver. The transducer is adapted to sense the electrical stimulation signals generated either naturally or by an electronic organ stimulator, such as an implanted cardiac pacer, and to convert the electrical stimulation signals to audible signals such as tone bursts. These audible tone bursts are then transmitted over a communication link such as the standard telephone network to the receiver located at a remote telephone station, typically a cardiologist's office. The receiver is adapted to measure the time interval between received tone bursts. The receiver is further adapted to display or indicate to an observer the time interval between received tone burst. If desired, the receiver can be adapted to indicate directly the repetition rate of the stimulation signals. The information is then utilized by an observer for diagnostic purposes. The monitor apparatus also includes a test means for testing the integrity of the apparatus including the transducer, the communication link and the receiver.
Further, U.S. Pat. No. 3,885,552 issued to Kennedy discloses a diagnostic method and system for the detection and transmission of data from a remote location to a central location.
U.S. Pat. No. 4,142,533 issued to Brownlee et al, discloses a monitoring system for cardiac pacers. It discloses a complete system for telemetering and monitoring the functioning of an implanted pacemaker as well as controlling the testing of the functions from a remotely located central facility is disclosed specifically comprising the provision of capabilities for directly and simultaneously transmitting from the pacer, electrical signals indicative of multiple pacer functions, such as, pacer rate, cell voltage, refractory period, heart rate with pacer inhibited, R-wave level and sensing margin, sensing circuit and other component failure, cardiac electrode lead break, and hermetic integrity. The indicative signals are picked up at the patient's location for local analysis and/or telephonically communicated to a remote central monitoring station. The central station may control testing of the pacemaker functions by transmitting command signals back telephonically for coupling through cooperating external and implanted inductances or magnetically controlled switches to the implanted pacer circuitry. U.S. Pat. No. 5

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Information remote monitor (IRM) medical device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Information remote monitor (IRM) medical device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Information remote monitor (IRM) medical device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3323774

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.