Inflatable tubular knee bolster

Land vehicles – Wheeled – Attachment

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C280S732000

Reexamination Certificate

active

06336653

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to safety apparatus for protecting the legs and lower torso of the occupant of a motor vehicle to reduce the extent and severity of injuries sustained during a crash. This invention more specifically relates to using an inflatable bolster to restrain the occupant's legs and lower torso during a survivable crash.
2. Background of the Invention
During a frontal impact, the occupant moves forward due to the inertia and kinematics of the crash while the front components of the vehicle structure (bumper, hood, engine cavity) begin to collapse. Knee and leg injuries occur when the body of an occupant slides or submarines forward and/or downward and the occupant's knees hit the instrument panel or structure beneath the panel. Further injuries occur when the occupant's lower torso and legs move forward such that the knees are trapped in or beneath the instrument panel just before the foot well begins to collapse. As the foot well collapses, it pushes the occupant's feet backward, causing the knees to elevate and become further trapped. As the foot well continues to crush, the loads on the trapped legs increase and cause foot, ankle, and tibia injuries. These injuries are common even with fixed knee bolsters designed to meet present knee injury criteria requirements.
Abdominal and lower torso injuries can be inflicted by the lap and lower part of the torso belts as they ride upward on the soft tissue of the occupant's torso when he slides forward and downward due to the forces of the frontal crash.
SUMMARY OF THE INVENTION
The present invention, inflatable tubular bolster (ITB), protects the knees, femurs and lower torso as well as the feet, ankles, and lower legs of the occupant by creating an inflatable restraint that deploys in front of the occupant's knees and inhibits forward and downward movement by the occupant during a frontal crash. It protects by preventing the knees from becoming trapped in or underneath the dashboard. Further, by transferring energy from the lower torso of the occupant through the femur and knees to the invention itself, this invention reduces the severity of injuries to those body parts as well. This invention also reduces the severity of lower torso injuries due to seat belt pressure by stabilizing the lower body and preventing the knees and legs from moving forward, thus allowing the seat belt to remain in its preferred position on the occupant.
The present invention improves egress and extraction of the occupant from a vehicle after a crash because it prevents the occupant from becoming wedged into or underneath the interior structure. Since this invention is smaller in size prior to being deployed, similar to an air bag, it does not intrude into or occupy significant space within the occupant compartment as does a conventional fixed knee bolster. This is a major advantage from not only the entry, egress and overall comfort viewpoints, but also from an aesthetic design consideration.
This invention is installed beneath or as part of the lower face of the dashboard. One end is rigidly attached to the vehicle side structure near the door while the other end is attached either to the center tunnel for single occupant use or to the other side of the vehicle for multiple occupant use. In the stowed position, the tube is flat and hidden from the occupant's line of sight. This invention is stowed around the upper perimeter of the leg space behind a piece of trim or under a split-seam in the dashboard face. Original equipment manufacturers will be able to install the system into current platforms and integrate the device into future platforms.
The gas generator which inflates the unit can be mounted remotely in a convenient location, such as forward in the dashboard using a flexible or combination rigid/flexible gas conduit to this invention.
In the event of a crash, a crash sensor signals the gas generator to ignite and discharge gas at a high mass flow rate into the gas conduit leading to the ITB. As the ITB inflates, its length significantly decreases as its diameter increases. The ITB becomes semi-rigid as inflation completes, and it pulls itself out of its stowed position downward and rearward into its functional position. Within about 12 to 25 ms after impact, the taut, tubular cushion positions itself in front of the occupant's knees, restrains forward and downward occupant movement, cushions the occupant from impact, and functions as a barrier between the occupant's knees and legs and the vehicle's structure. When the occupant hits the ITB, impact forces are transferred to the vehicle's structure through this invention webbing and hardware. When the impact has passed and the occupant is at rest, he relaxes the load on this invention and is very close to his initial position.
Unlike conventional inflatable restraints, this invention uses an inflatable braided tube of continuous high-strength fiber, as described in U.S. Pat. No. 5,480,181, which is incorporated herein by reference. These fibers seek an orientation that accommodates a greater volume within the tube when under pressure. Prior to inflation, the fiber spirals are stretched-out longitudinally and the tubular restraint has a relatively small diameter. During inflation, the spirals move closer together longitudinally to increase the braided tube's diameter and decrease its length, or contract.
The contraction in length of the braided tube during deployment and the consequently high tensile forces developed at its fixation points constitute a significant difference between the present invention and prior art. Uninflated, the orientation of the braided tube's fibers are at a longitudinal angle of 30 degrees to 70 degrees to each other. Though the fibers theoretically seek a maximum longitudinal angle of 110 degrees during inflation, in actual tests the post-inflation orientation is typically 100 degrees in an unloaded, or unconstrained tube. The range of typical contraction of the unconstrained inflatable tube is 21.5 percent (for the 70 to 100 degree change) to about 33.5 percent (for the 30 to 100 degree change).
The calculation for determining the amount of contraction occurring upon inflation in an unconstrained condition for the present invention is as follows:
Lf−Li=X
where:
X is the amount of contraction
Lf is the length of flat, uninflated material
Li is the length of unconstrained inflated material, and
&thgr;f is the longitudinal angle prior to inflation
&thgr;i is the longitudinal angle after inflation and
Li/Lf=cos(&thgr;i/2)/cos(&thgr;f/2) hence
Lf−Li=Lf(1−(cos(&thgr;i/2)/cos(&thgr;f/2)))
For example, an embodiment of the present invention having an uninflated length of 100 cm and constructed with fibers that cross each other at a 36 degree angle would decrease in length, or contract, to 67 cm, approximately 33 percent, upon inflation in an unconstrained condition. (The calculation assumes that the angle of the fibers in an unconstrained inflated braided tube will be 100 degrees.)
The present invention contracts as a result of both inflation and contraction, typically contracting 21.5 percent to 33.5 percent from the change in orientation of the fibers (construction) plus an additional small percentage (Lf−Li=Df(1−2/&pgr;)) as a result of the inflation pressure. Prior inventions, however, contract in length solely due to inflation, yielding a comparatively small contraction of approximately 7 to 10 percent. This greater contraction that this invention undergoes causes the restraint to be tighter and therefore develop high tensile forces at its fixation points. A tighter restraint is more resistant to deflection and allows more force to be directed through the webbing of this invention attachments to the vehicle structure. The occupant's knees, legs, and lower torso will therefore move less, and thus the occupant is less likely to be injured.
Another important difference between this

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Inflatable tubular knee bolster does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Inflatable tubular knee bolster, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Inflatable tubular knee bolster will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2828948

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.