Inflatable restraint module

Land vehicles – Wheeled – Attachment

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C280S730200

Reexamination Certificate

active

06802526

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to inflatable restraints. More specifically, the present invention relates to an inflatable restraint module that is lighter and less expensive than conventional airbag modules.
2. Technical Background
The inclusion of inflatable safety restraints, or airbags, is now a legal requirement for many new vehicles. In addition to this, inflatable airbags enjoy widespread acceptance for use in motor vehicles and are credited with preventing numerous deaths and injuries. Some studies estimate that the use of frontally placed airbags reduces the number of fatalities in head-on collisions by 25% among drivers using seat belts and by more than 30% among unbelted drivers. Other research suggests that in a frontal collision, the combination of a seat belt and an airbag can reduce serious chest injuries by 65% and serious head injuries by up to 75%. These numbers, and the thousands of prevented injuries they represent, demonstrate the life-saving potential of airbags and the need to encourage their use, production, and development.
As a result, in part, of benefits such as those described above, automakers are now required to install airbags in most new vehicles sold in the United States. Furthermore, many automobile manufacturers have turned airbag technology into a marketing tool. Enticed by the promise of added safety, many vehicle purchasers seek out vehicles with sophisticated airbag systems.
Airbags are often installed in the steering wheel and in the dashboard on the passenger side of a vehicle. In the event of an accident, an accelerometer situated within the vehicle measures the abnormal deceleration caused by the accident and triggers the expulsion of expanding gases from an inflator into each of the airbags. The expanding gases rapidly fill the airbags, which immediately inflate in front of the driver and passenger to protect them from impacts against the windshield, dashboard, or steering wheel.
As a result of the success of front-installed airbags, other airbags designed to protect occupants in various types of vehicular collisions have been developed. For instance, side impact airbags, often in the form of inflatable curtains, were developed in response to the need for protection from impacts in a lateral direction, or against the side of the vehicle. Such curtains are placed along the side of a vehicle in places such as the ceiling or roof rails. An inflatable curtain may be composed of one or more separately inflated cushions that protect individual passengers in different positions within the vehicle.
Automobile manufacturers may install airbags in their vehicles by securing an airbag module to an appropriate location within the vehicle and connecting an inflator within the module to an accelerometer of the vehicle. The airbag module may include structures for securing the module within the vehicle and an interface for connecting the inflator to the accelerometer.
One type of conventional airbag module may include an inflatable cushion. The inflatable cushion may have two openings for receiving the inflator. However, the inflator cannot be placed immediately adjacent to the inflatable cushion. If so, heat generated during activation of the inflator could damage the cushion and prevent proper deployment.
To avoid damage to the cushion, a diffuser is often interposed between the inflator and the cushion. The diffuser surrounds the inflator and separates the inflator from the cushion. The diffuser is often made from metal. Consequently, the diffuser is quite heavy. Also, the diffuser typically includes a number of openings to allow gas from the inflator to move from the inflator into the cushion. As such, the diffuser is intricate and is made by a relatively complex manufacturing process. This process can become quite expensive, particularly when a large number of airbag modules are manufactured. The diffuser may also include protrusions for securing and orienting the diffuser within a canister, again increasing the complexity of the airbag module.
The canister protects the inflatable cushion and inflator and may be used to secure the airbag module to the vehicle. Although various configurations exist, the protrusions generally pass through apertures in the inflatable cushion and interlock with the canister. Unfortunately, the apertures increase the cost and complexity of manufacturing the cushions.
The canister must also include openings, mechanisms, and/or structures for interlocking with the protrusions of the diffuser. These interlocking mechanisms are often complex and intricate. The manufacturing process must be precise to ensure a smooth interaction between the protrusions and the locking mechanisms. Thus, the manufacturing costs are high.
In view of the foregoing, it would be an advancement in the art to provide an airbag module having lighter and less intricate components. It would be a further advancement in the art to provide an airbag module that is less expensive to manufacture than conventional airbag modules.
SUMMARY OF THE INVENTION
The apparatus and methods of the present invention have been developed in response to the present state-of-the-art, and, in particular, in response to problems and needs in the art that have not yet been fully resolved by currently available airbag modules. To achieve the foregoing, and in accordance with the invention as embodied and broadly described in the preferred embodiments, an inflatable restraint module that is lighter and less expensive to manufacture than conventional airbag modules is disclosed.
The inflatable restraint module may include an inflator that generates gas or foam to inflate an inflatable cushion. The gas or foam may exit the inflator through one or more gas exit ports. The inflator may be generally cylindrical in shape and have a first and a second end. The first end of the inflator may include inclined threads. A mating nut may be attached to the incline threads. The second end of the inflator includes an expanded portion.
The inflatable restraint module may also include a heat shield disposed around the inflator. The heat shield is shaped to surround the inflator. For instance, if an inflator is cylindrical in shape, the heat shield may be a rectangular piece of fabric that can be positioned around the inflator. The heat shield may be made from various materials, including a heat-resistant fabric.
The heat shield does not necessarily encompass the entire inflator. Instead, the heat shield, when disposed around the inflator, may define a gap. The exit gas ports of the inflator may be aligned with the gap in the heat shield.
The inflatable restraint module may include an inflatable cushion disposed around the heat shield and inflator. More specifically, the cushion may include a loop defining two orifices. The orifices may be shaped to receive an inflator such that the cushion surrounds the inflator. The cushion may also include an expandable portion that expands when a foam or gas from the inflator is rapidly injected into the inflatable cushion.
The inflatable restraint module may also include a chamber positioned around the inflator, heat shield, and loop of the cushion. The chamber may be generally cylindrical and may be shaped to receive the inflator, heat shield, and loop. More specifically, the chamber may include an interior compartment having two open ends. Thus, the loop of the cushion having the inflator and heat shield disposed therein is positioned within the interior compartment. The chamber is shorter than the inflator such that the first and second ends of the inflator may protrude out of each of the open ends of the chamber when an inflator is positioned in the chamber.
The open ends of the interior compartment should be sufficiently large, such that the inflator, heat shield, or both may be inserted through one of the open ends into the interior compartment. Of course, the open ends may be partially enclosed and still permit an inflator to be inserted into the interior compartment.
An opening may be formed

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Inflatable restraint module does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Inflatable restraint module, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Inflatable restraint module will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3321964

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.