Firearms – Safety mechanism
Reexamination Certificate
1999-12-21
2002-02-05
Eldred, J. Woodrow (Department: 3644)
Firearms
Safety mechanism
C042S070050, C042S070040, C089S142000, C089S150000, C089S154000
Reexamination Certificate
active
06343429
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to firearm safety devices, and more particularly, to mechanisms for preventing accidental firing of a partially electronically controlled firearm.
BACKGROUND OF THE INVENTION
As society has moved further and further from rural, agricultural and hunting population bases towards urban population centers, there has become a greater and greater concern for firearm safety. Of particular concern are incidents of improper handling of firearms by unsanctioned individuals that lead to disastrous results.
Also, firearms have traditionally been advantageous, when properly understood and used, for protection against would be perpetrators of crimes against the property, homes, family and person of law-abiding citizens (“More Guns, Less Crime”—Professor John R. Lott, Jr. 1996, University of Chicago). Yet there is a concern that firearms may be accessed by unauthorized individuals or children. Further, there have been instances in which citizens and police have had their firearms taken from them by intruders, suspects and criminals who then use the firearm against the rightful owner. Thus, there is a need to reduce such incidences of accidental or intentional access by unauthorized persons and children and there is a need to reduce instances of firearms taken from individuals and police officers to be used to assault the individuals or police officers.
As one of the safeguards of our freedom, the Constitution of the United States grants every lawful citizen the right to bear arms. At the same time, however, general access to firearms necessitates societal responsibility to ensure that incidents of gun injury are minimized. Thus, there are two simultaneous needs: the need for free people to own firearms if desired and a need to promote safety through education and by offering the choice of additional safety enhancement features to those who may benefit from them.
Many safety devices for firearms have been proposed in the past. However, a device that adequately addresses the personalization of a firearm has not been devised prior to the present invention. For example, safety devices using mechanical keys have been devised; however, keys require keeping track of the key and locating the key before using the firearm. In times of fear or panic, the act of inserting the key prior to operation can lead to difficulties and inability to use the firearm for protection in an emergency. The firearm, once activated with the key, can be taken from the rightful owner and continued to be used as long as the key remains inserted. This does not address many of the concerns regarding firearms to be used for protection or that might be taken away from the rightful user.
Another previously proposed safety mechanism requires mechanical manipulation to cause certain slides and levers to be moved into proper position for allowing firing. Although the requirement that the owner must learn and use certain complex movements, providing a modicum of additional safety, it nevertheless also interferes with prompt use for defense purposes. Also, once the movements become generally known, anyone having this knowledge may use the firearm. Moreover, the risk of accidental “successful” manipulation of the device by a child continues to exist.
Magnetically activated switches or magnetically moveable slide mechanisms for blocking the firing mechanism have also been proposed. However, devices that do not discriminate as to the strength of the magnet required can be activated by anyone having a magnet.
Magnetically activated switches having a particularly selected magnetic strength range have also been proposed. Such devices successfully permit only an individual having the proper strength magnet on a finger ring to operate the firearm. It has been found that such devices are useful for a limited number of selected field strength ranges and thus to distinguish between those without magnets and an individual user having a magnetic ring with the appropriate strength. These devices act quickly in emergency defensive use situations, but nevertheless face some drawbacks with respect to the limited number of selectively distinguishable strength ranges for magnets.
Handprint and fingerprint identification devices have been proposed in which the grip of the firearm has sensors that are connected to a microprocessor to detect distinctive prints of an authorized user. However, the power requirements are significant and tend to prevent practical usage. Also, the complexity, the reliability and the sophistication of the computerized identification of handprints and fingerprints have made this proposed solution very expensive and impractical for wide-scale adoption. Fingerprint identifications are likely to fail when the grip is wet with rain, condensation or another liquid or when hands are wet, sweaty, dirty, greasy or otherwise soiled or when gloves are worn. Any or all of these factors could be present when use of the firearm is appropriate by a peace officer, the rightful owner or another properly authorized individual.
Personal identification of an authorized user through radio transmission of a coded signal from a user to a transceiver has also been proposed. Such a device, however, requires both an adequate power supply mounted in the firearm for operating the transceiver and the safety mechanism and also an adequate power carried by the user supply for operating the transponder or transmitter carried by the authorized user. Moreover, radio transmission and reception generally requires an antenna having a length equal to one-fourth of a wavelength. Thus, for frequencies lower than the gigahertz range the transponder can be quite large. To date, this proposed solution has been impractical and has not been successfully implemented for commercial applications. Some of the problems include the onboard power supply being continuously drained while awaiting receipt of authorized radio signal transmission. Also the transmitter/transponder carried by the authorized user must have an adequate power supply. The risk is significant that the battery power of a stored firearm will become depleted and will thereby prevent use of the firearm by the authorized user at inopportune times. No one wants to be looking for and replacing batteries when an intruder invades their home. Further, the personalized transmitter/transponder can be larger than an ordinary ring in order to accommodate an adequate antenna size or to provide adequate power for continuous availability of the firearm for use. Radio transmission also typically provides for reception distances of more than a few feet, which is generally sufficient for close range use of a firearm against the authorized user. This is not acceptable for situations where a police officer might have a firearm wrested away in a scuffle with a suspect. Also traditional radio frequency signals are subject to many types of outside interference. For example high voltage noise, other radio broadcast, large transformers, certain electronic equipment and even lighting. Even sun spots have been suspected to have caused radio controlled garage doors or other radio controlled equipment to open.
Another device shown in U.S. Pat. No. 5,564,211 provides for a directional radio signal wherein the authorized user has a transmitter and the firearm has a receiver. The receiver is designed to deactivate the firearm whenever the directional radio signal indicates that the firearm is pointed at the individual having the authorized radio transmitter. Such a device is clearly useful for certain purposed as it is designed to reduce the risk of a firearm being used against a rightfully authorized user. Once again, these devices have significant power requirements, both for the receiver and the transmitter, so that they suffer from some of the drawbacks as with some of the other prior radio coded devices.
Voice identification and voice activation firearm safety devices have also been proposed. Problems arise with properly programming voice identification or other voice command activation si
Kinion Kevin F.
Kluwe George E.
Mossberg Jonathan E.
Safford Robert
Eldred J. Woodrow
Holland & Bonzagni, P.C.
Holland, Esq. Donald S.
Mossberg Group, L.L.C.
LandOfFree
Inertia-resistant preventer mechanism for firearm safety... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Inertia-resistant preventer mechanism for firearm safety..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Inertia-resistant preventer mechanism for firearm safety... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2941877