Inductrack magnet configuration

Electricity: magnetically operated switches – magnets – and electr – Magnets and electromagnets – Magnet structure or material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C310S012060, C310S090500, C104S281000, C104S286000

Reexamination Certificate

active

06664880

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to magnetic levitation systems for moving objects, and more specifically, to an improved magnetic levitation train system.
2. Description of Related Art
Halbach arrays, invented by Klaus Halbach in the 1980s for use in particle accelerators, represent a maximally efficient way to arrange permanent-magnet material when it is desired to produce a strong periodic magnetic field adjacent to the array. The beauty of the concept is that the effect of the cross-magnetized magnet bars in the array is to enhance the periodic magnetic field at the front face of the array, while canceling it back face of the array. Not only is the field enhanced, but analysis shows that in a long array the horizontal and vertical components are nearly purely sinusoidal in their spatial variation, with negligible higher spatial harmonics. If the Halbach array is then fabricated from high-field permanent-magnet material, such as NdFeB, peak fields near the front face of the array of order 1.0 Tesla are possible.
Particularly for lower-speed applications of magnetic levitation, such as for urban train systems, it is desirable to employ systems that are simple in construction and operation and that have low drag at urban speeds. Conventional maglev systems, that is, ones employing superconducting coils, or ones requiring servo-controlled electromagnets for levitation, appear to fall short on one or more of these counts.
Since it was first proposed the magnetic levitation of trains has been perceived to offer many potential advantages over conventional train technology. Besides the ability of maglev trains to operate a higher speeds than are deemed possible with wheel-and-rail trains, maglev trains should require less maintenance and be much smoother-riding and quieter than conventional rail systems. These perceived advantages have stimulated major development programs, particularly in Germany and Japan, to solve the technical and economic challenges of this new technology. These decades-long efforts have resulted in impressive demonstration systems, but as yet have not led to commercially operating rail systems in these countries. Factors that have slowed the deployment of high-speed maglev trains based on these technologies include technical complexity and high capital cost.
In an attempt to address these issues by taking advantage of new concepts and new materials, a different approach, called the Inductrack, was proposed. The first-proposed Inductrack disclosed in U.S. Pat. No. 5,722,326, titled “Magnetic Levitation System For Moving Objects”, referred to herein as Inductrack I, employs special arrays of permanent magnets (“Halbach arrays”), on the moving train car to produce the levitating magnetic fields. These fields interact with a close-packed ladder-like array of shorted circuits in the “track” to levitate the train car. In this first form of the Inductrack, single arrays moving above the track produced the levitation. Whereas the Japanese maglev system employs superconducting coils and the German system requires servo-controlled electromagnets for levitation, the Inductrack is based on the use of high-field permanent magnet material, arranged in a special configuration called a Halbach array.
In the Inductrack maglev system Halbach arrays are used, located below the train car. When in motion the magnetic field of these arrays then induces currents in a special “track” made up of close-packed shorted circuits. Analysis has shown that the combination of the three elements, Halbach arrays, NdFeB magnet material, and close-packed circuits in the track result in the possibility of achieving levitation forces in excess of 40 metric tons per square meter of levitating magnets, corresponding to magnet weights of only a few percent of the levitated weight. The use of Halbach arrays, high-field magnet material and close-packed circuits as employed in the Inductrack thus overcomes previous concerns, e.g., inadequate levitation forces, that led to questioning the practicality of using permanent magnets for maglev trains.
The theoretical analysis of the Inductrack leads to the evaluation of such quantities as the Lift-to-Drag ratio and the levitation power requirements as a function of train speed and of the magnet and track parameters. For the first-proposed, single-Halbach-array, form of the Inductrack, the L/D ratio is given by a simple relationship, given in Equation 1 below.
·
Lift
Drag
=
kv

[
L
R
]
(
1
)
Here k=2Π/&lgr;, where &lgr;(m.) is the wavelength of the Halbach array. Note that the Lift/Drag ratio increases linearly with the train velocity and that its slope is determined by the inductance (self plus mutual) and the resistance of the track circuits. For a ladder-like track, that is one composed of transverse bars terminated at both ends with shorting buses, typical values for L and R give Lift/Drag ratios of the order of 300 at speeds of 500 km/hr typical of high-speed maglev trains. This ratio is high enough to make the levitation losses small (less than 10 percent) of the aerodynamic losses at such speeds. Also, for the Inductrack the “transition speed,” the speed at which the lift has risen to half its final value (and also the speed where the lift and drag forces are equal) is low, of order a few meters/second (walking speeds). Thus the first-proposed form of the Inductrack would seem well suited for high-speed maglev train applications.
However, an examination of the first-proposed form of the Inductrack for its possible use in an urban setting, where the typical speeds are of order one-tenth of that of a high-speed maglev system, shows that the older system leaves something to be desired. Now, unless inductive loading of the track circuits is employed, the Lift/Drag ratio will have dropped to 30 or less. For an urban train car weighing, say, 20,000 kilograms, a Lift/Drag ratio of 30 at 50 km/hr corresponds to a drag force of about 6500 Newtons at a drag power in excess of 90 kilowatts.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a magnet configuration comprising a pair of Halbach arrays magnetically and structurally connected together and a track located in between such that when the pair of Halbach arrays move along the track and the track is not located at the first plane, a current is induced in the windings and a restoring force is exerted on the pair of Halbach arrays.
It is another object of the invention to attach the Halbach arrays to a vehicle.
Still another object of the invention is to provide windings on the track.
Another object of the invention is to provide windings that comprise a planar array of conductors shorted together at their ends.
An object of the invention is to provide a pair of Halbach arrays that when moving, have a characteristic lift-to-drag ratio at operating loads that can be increased by increasing the area of the pair of Halbach arrays to decrease the downward displacement required to levitate a given weight, and thus decrease the current required for levitation.
These and other objects will be apparent based on the disclosure herein.
In the present invention, referred to sometimes herein as “Inductrack II”, dual arrays are used, one above and one below cantilevered track circuits. Important gains result from the use of dual Halbach arrays: First, the levitating (horizontal) component of the magnetic field is approximately double that of a single array. This circumstance implies that the same levitating force per unit area can be achieved with half the current in the track, i.e., with one-fourth of the resistive power loss. Second, the lower array, when it is phased with respect to the upper array so as to increase the horizontal (levitating) magnetic field component, decreases the vertical field component (the component that excites the current), allowing the optimization of the level of this current. By contrast, in the previous, single array, Inductrack I system the ratio of the vertical field component

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Inductrack magnet configuration does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Inductrack magnet configuration, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Inductrack magnet configuration will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3146352

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.