Inductor station for sortation conveying system

Conveyors: power-driven – Conveyor system for moving a specific load as a separate unit – System includes an oscillating or reciprocating load...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C198S740000

Reexamination Certificate

active

06182815

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to sortation conveying systems used to fulfill orders of assorted rectangular items such as books, packaged software, compact discs, games, video cassettes, etc. In particular, the invention relates to an inductor apparatus that loads items into assigned pockets on a core conveyor for the sortation system in single file with each item standing upright on edge in an essentially vertical orientation, thus facilitating efficient downstream processing and sorting.
BACKGROUND OF THE INVENTION
In centralized distribution applications, order fulfillment is often accomplished using computer controlled sortation conveying systems. Such systems can sometimes have lengths approaching 300 feet. Quite often, it is desirable that the sortation system be capable of fulfilling orders of intermingled items having assorted sizes. For example, it is not uncommon for an order to require a selected number of books having assorted sizes, intermingled with video cassette containers, compact disc containers, software, or the like.
In sortation conveying systems, a core conveyor conveys assorted items in single file, preferably in an upright position standing on edge so that bar code readers can easily identify the item prior to subsequent sorting and processing downstream. One type of core conveyor has separators or cleats dividing the conveyor belt into individual pockets. Sortation conveying systems normally include several inductor stations that are coordinated with the core conveyor to supply items to the pockets on the core conveyor in an organized manner. The items within the pockets on the core conveyor are then processed, sorted and stacked into separate outgoing orders. It is not unusual for outgoing orders to consist of hundreds of intermingled items, each generally having a rectangular shape but unique dimensions.
This invention relates to improvements to the operation of the inductor stations that load the items onto the core conveyor. It is desirable that workers be able to load assorted items into the inductor station in an easy and efficient manner, and that the inductor station be able to have items continually ready for loading onto the core conveyor under normal operating conditions. Preferably, the items should be standing upright on edge as the items are loaded onto the core conveyor. It is also desirable that the inductor stations be capable of efficiently handling assorted items having various dimensions.
SUMMARY OF THE INVENTION
The invention provides an inductor station that is able to accept charges of assorted items at an inconsistent or sporadic rate, yet is designed to continuously provide individual items ready for loading into assigned pockets in the core conveyor. In its preferred configuration, the inductor station accepts an assortment of substantially rectangular items each standing upright on edge and grouped in series side-by-side with other items. Each group of assorted items loaded into the inductor station is referred to as a charge. Each charge of assorted items is conveyed into a feeder tray for the inductor station in sequence one charge at a time, preferably using a gravity feed ramp with retractable queuing plates. A feeding assembly feeds the charge of assorted items along the feeder tray to a loading mechanism located at a discharge end of the feeder tray. The loading mechanism strips the endmost item from the charge, and loads the item onto a takeaway conveyor with the item standing upright on edge. The loading mechanism and takeaway conveyor belt are controlled in sync with the core conveyor to load the respective item into an assigned pocket on the core conveyor. Preferably, this is accomplished using a computer-controlled indexing motion stripping conveyor to load the items from the charge on the feeder tray in single file onto the takeaway conveyor belt.
The invention is particularly efficient and reliable because each respective item is loaded into the inductor station standing upright on edge, and maintains an upright on edge orientation as it passes through the inductor station and into the assigned pocket on the core conveyor. Maintaining consistent upright on-edge orientation allows for effective continued alignment of items being processed through the inductor station, and therefore reduces the risk of misfeeds and enhances throughput.
In the preferred embodiments of the invention, the feeding assembly, which feeds the assorted items along the feeder tray to the loading mechanism, includes two pushing mechanisms: namely, a main pushing mechanism and a secondary pushing mechanism. The operation of the main pushing mechanism and the secondary pushing mechanism are coordinated electronically to facilitate substantially continuous feeding of assorted items to the loading mechanism. More specifically, the main pushing mechanism uses a pushing hand mounted for travel along the feeder tray between a home location and a stop location for the main pushing mechanism. The home location for the main pushing mechanism is located on the side of the feeder tray opposite the discharge end of the feeder tray. The main pushing mechanism is positioned at its home location when the feeder tray is ready to receive the next charge of assorted items. The main pushing mechanism then applies pressure against the charge to move the charge of assorted items along the feeder tray to the loading mechanism at the discharge end of the feeder tray. As mentioned, the endmost item in the charge is loaded onto the loading mechanism. In order to facilitate appropriate cooperation between the pushing mechanism and the loading mechanism, the pushing mechanism pushes in a controlled pulsating manner such that the pushing pressure is relieved when the endmost item is loaded from the feeder tray onto the loading mechanism. The pushing pressure is reapplied after the endmost item has been loaded onto the takeaway conveyor and the loading mechanism is ready to be loaded with the next item in the charge. The controlled pulsating action is preferred because it is desirable to relax the tension in the charge after the endmost item is loaded into the loading mechanism in order to reduce frictional and normal forces operating between the endmost item and the next item in the charge. The relaxation improves the reliability of the loading mechanism and helps to prevent misalignment and misfeeds. The secondary pushing mechanism has a retractable pushing hand that is mounted for travel along the feeder tray between a home location for the secondary pushing mechanism and the discharge end of the feeder tray. The home location for the secondary pushing mechanism is located between the home location for the main pushing mechanism and the discharge end of the feeder tray, and preferably substantially closer to the discharge end of the feeder tray. As the main pushing mechanism moves the charge along the feeder tray and becomes close to the discharge end of the feeder tray, the secondary pushing mechanism is implemented as a substitute for the main pushing mechanism. After substitution, the main pushing mechanism returns to its home location ready to accept the next charge of assorted items while the secondary pushing mechanism continues to feed the remainder of the charge to the loading mechanism. The pushing hand for the secondary pushing mechanism retracts for travel under the floor of the feeder tray as it returns towards its home position prior to substitution for the main pushing mechanism, thus avoiding interference with assorted items in the feeder tray as it returns. When it is time for the secondary pushing mechanism to substitute for the main pushing mechanism, the fingers on the pushing hand for the secondary pushing mechanism extend upward through slots in the feeder tray and into openings in the hand for the main pushing mechanism. The secondary pushing mechanism then continues to feed the charge towards the loading mechanism, and the main pushing mechanism returns to its home position in order to receive the next charge of assorted items.
I

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Inductor station for sortation conveying system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Inductor station for sortation conveying system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Inductor station for sortation conveying system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2577041

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.