Inductive transducer with recessed leading pole layer

Dynamic magnetic information storage or retrieval – Head – Core

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06724572

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to electromagnetic transducers, which may for example be employed in information storage systems or measurement and testing systems.
An inductive head used for writing and/or reading magnetic information on a storage media such as a disk or tape includes electrically conductive coil windings encircled by a magnetic core including first and second pole layers. Portions of the pole layers adjacent the media are termed pole tips. The magnetic core is interrupted by a submicron nonmagnetic gap disposed between the pole tips to divert magnetic flux to the media during writing. To write to the media electric current is flowed through the coil, which produces magnetic flux in the core encircling the coil windings, the magnetic flux fringing across the nonmagnetic gap adjacent to the media so as to write bits of magnetic field information in tracks on the media.
The first pole layer may also serve as a magnetic shield layer for a magnetoresistive (MR) sensor that has been formed prior to the pole layers, the combined MR and inductive transducers termed a merged head. A structure in which a magnetic shield layer is disposed adjacent to a first pole layer may be termed a piggyback head. Typically the first pole layer is substantially flat and the second pole layer is curved, as a part of the second pole layer is formed over the coil windings and insulation disposed between the pole layers, while another part nearly adjoins the first pole layer adjacent the gap. The second pole layer may also diverge from a flat plane by curving to meet the first pole layer in a region distal to the media-facing surface, sometimes termed the back gap region, although typically a nonmagnetic gap in the core does not exist at this location.
The curvature of the second pole layer from planar affects the performance of the head. An important parameter of the head is the throat height, which is the distance from the media-facing surface to the point at which the first and second pole layers begin to diverge and are separated by more than the submicron nonmagnetic gap. Because less magnetic flux crosses the gap as the pole layers are further separated, a short throat height is desirable in obtaining a fringing field for writing to the media that is a significant fraction of the total flux crossing the gap.
In addition to the second pole layer being curved from planar, one or both pole layers may also have a tapered width in the pole tip area, to funnel flux through the pole tips. The width of the pole tips, also known as the track width, may be decreased to allow more tracks to be written in a given area. As the track width is decreased, however, it becomes more difficult to efficiently funnel magnetic flux through the pole tips. A magnetic pedestal may be employed between the second pole layer and the second pole tip, in an attempt to obtain sufficient signal strength at the edge of the second pole tip adjacent the gap, which writes to the media.
SUMMARY
In one aspect, an inductive transducer is disclosed having a leading pole layer and a leading pole tip, with the pole layer being further removed than the pole tip from a media-facing surface. In another aspect, an inductive transducer is disclosed having a magnetic pedestal disposed between a leading pole layer and a leading pole tip, with at least one of the pedestal and pole layer being further removed than the pole tip from a media-facing surface. In another aspect, a leading pole layer or pedestal may have a surface that slopes away from the media-facing surface with increasing distance forward from the leading pole tip. This summary merely lists a few waspects of the disclosure while the invention is defined by the claims appended below.


REFERENCES:
patent: 5452166 (1995-09-01), Aylwin et al.
patent: 5831801 (1998-11-01), Shouji et al.
patent: 5850326 (1998-12-01), Takano et al.
patent: 5950301 (1999-09-01), Gray et al.
patent: 6069015 (2000-05-01), Gray et al.
patent: 6091582 (2000-07-01), Komuro et al.
patent: 6490127 (2002-12-01), Sasaki
IEEE Transactions on Magnetics article entitled “Off-track Performance of Thin Film Single Pole Head for Perpendicular Double-layered Media”, by H. Yamada et al., vol. 34, No. 4, Jul. 1998, pp. 1468-1470.
IEEE Transactions on Magnetics article entitled “Design of Recessed Yoke Heads for Minimizing Adjacent Track Encroachment”, by Y. K. Kim et al., vol. 36, No. 5, Sep. 2000, pp. 2524-2526.
IEEE Transactions on Magnetics article entitled “Slide Track Erasure of Stitched-Pole Magnetic Recording Heads”, by D. Guarisco et al., vol. 36, No. 5, Sep. 2000, pp. 2527-2529.
IEEE Transactions on Magnetics article entitled “Pole Tip Recession (PTR) Measurements with High Accuracy, Precision, and Throughput”, by A. V. Kulkarni et al., vol. 36, No. 5, Sep. 2000, pp. 2736-2738.
IEEE Transactions on Magnetics article entitled “Eddy-Current-Assisted Digital Video Read/Write Head”, by H. A. Shute et al., vol. 37, No. 4, Jul. 2001, pp. 3043-3052.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Inductive transducer with recessed leading pole layer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Inductive transducer with recessed leading pole layer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Inductive transducer with recessed leading pole layer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3205480

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.