Inductional undulative EH-accelerator

Electric lamp and discharge devices: systems – High energy particle accelerator tube

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C315S501000, C315S111610, C315S111210, C315S505000, C313S359100, C250S251000, C250S292000, C250S3960ML, C250S42300F

Reexamination Certificate

active

06433494

ABSTRACT:

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
Not applicable.
BACKGROUND OF THE INVENTION
The starting point in the history of particle accelerators can be taken as June, 1932, when J. D. Cockcroft and E. T. S. Walton first used electrostatically accelerated particles to disintegrate a nucleus. Shortly thereafter, E. O. Lawrence and M. S.Livingston demonstrated atom smashing with a new accelerator called the cyclotron, in which high particle energies are achieved by accelerating the particles across a single gap between a pair of electrodes situated in a magnetic field which turns the particles into circular orbits. See the following publications:
(1) J. D. Cockcroft, E. T. S. Walton, “Experiments with High Velocity Ions. I. Further Developments in the Method of Obtaining High Velocity Positive Ions”, Proc. Roy. Soc., A, Vol. 136, p.619 (1932)
(2) E. O. Lawrence, M. S. Livingston, “The Production of High Speed Light Ions Without the Use of High Voltages”, Phys. Rev. Vol. 40, p. 19 (1932).
Since then, many accelerators have been built so that today, accelerators for producing high energetic charged particle beams can be placed into several broad categories, depending on the particle energy produced:
Very low energy (100 KeV)
Low energy (0.1 to 10 Mev)
Medium energy (10 to 200 MeV)
High energy (0.2 to 1 BeV)
Very high energy (>1 BeV)
Very low energy accelerators are predominantly used in X-ray generators for medical applications and in electron microscopes. Low energy accelerators are used by the electronics industry for doping semiconductors. Medium energy machines are applied to smashing atoms. High and the very high energy accelerators are used for the generation of subatomic particles in high energy physics.
The very-low and the low energy accelerators are mostly electrostatic machines which need a source of very high voltage to operate. Here, the maximum voltage is limited to 5 MV, and is determined by the breakdown of insulation materials in air. These two systems are quite large in size, with the low energy systems being typically of 4 to 8 meters in length and occupying large rooms. For medium energy accelerators exceeding 10 MeV, the principle of acceleration by induction is applied. Here the particles undergo frequent impulses of energy increase as they move between electrodes driven by RF (radio frequency) power in step with their motion. These so called “induction accelerators” are usually circular and very large in size, with the particle orbit diameters being measured in kilometers. Some other medium energy machines, such as the betatron are used for the acceleration of electrons. They are also circular but very heavy because of the huge electromagnets used to produce an electric field by induction. See generally:
(3) D. W. Kerst, “The Acceleration of Electrons by Magnetic Induction”, Phys,. Rev., Vol 60, p 47 (1941)
(4) M. S. Livingston, “The Development of High Energy Accelerators”, Dover Publications (New York, 1966).
The semiconductor industry is a very large and important one in the US and in many other countries. Here particle accelerators of the very low and the low energy categories are used. However, their applications are very much restricted due to their size, weight and cost. Of the two types, electron beam accelerators are used for microelectronic circuit pattern generation on mask substrates. The other, the ion beam accelerators are used for the doping of semiconductors. These are rather peripheral uses of accelerator systems because the main “workhorse” operation in semiconductor microcircuit fabrication is the projection, or transfer, of the electronic circuit patterns on mask onto the surfaces of semiconductor wafers. The workhorses of this semiconductor industry today are predicated upon optical beam systems because they are much cheaper, small in size and more reliable than current particle accelerator systems. However, current semiconductor technology is now approaching the “door-step” of the limits of the capabilities of optical-based pattern-projection/transfer systems of excimer-laser-based optics. These systems produce light of wavelength near 150 nm, and since the fundamental optical resolution limit is the half-wavelength of light, this means that these optical systems will “run out” or become ineffective when industry moves, as essentially it must, down to 80 nm wide device structures. This limit is anticipated to be reached in about 5 years, that is around the year 2005. At the present time (year 2000) the smallest device dimensions in computer and memory semiconductor devices is at 180 nm. The 80 nm and smaller device dimensions will be needed to meet the future industrial requirements of faster circuits with increased number of transistors per circuit package. Therefore, for the semiconductor industry of the United States (which dominates and sets the world standards in this industry) to maintain its momentum of advancement, a new workhorse system needs to be developed. It was established some time ago (in the 1970's) that such systems must be based on charged particle accelerators such as electron accelerators, proton accelerators and heavy-ion accelerators. However, current particle accelerator technology cannot meet these needs. Heretofore, the state-of-the-art accelerators have been nothing more than scaled down versions of the 50 to 70 year old technologies pioneered by van der Graaf and Cockroft and Walton. Major advances in this early technology have been limited mainly to the construction of the associated electronics and have involved the replacement of vacuum-tube-based circuits with semiconductors-based ones. A compact accelerator as opposed to the relatively immense accelerator sizes of earlier technology will be required to fulfill this forthcoming need for a new type of workhorse in the semiconductor industry.
In 1997, Kulish, Kosel and Kailyuk proposed a new principle for the acceleration of charged particles and formation of quasi-neutral plasma beams. With this new technical approach to particle accelerators, the use of EH-undulated fields was proposed wherein both negative and positive charged particles could be accelerated simultaneously and unidirectionally. See generally the following publications:
(5) Victor V. Kulish, Peter B. Kosel, Alexander G. Kailyuk, “New Acceleration Principle of Charged Particles for Electronic Applications”, The General Hierarchic Description, Int. J. Infrared & Millimeter Waves, Vol. 19, No. 1, p.33 (1998).
(6) Victor V. Kulish, Peter B. Kosel, Alexander G. Kailyuk, Ihor Gubanov “New Acceleration Principle of Charged Particles for Electronic Applications”, Examples, Int. J. Infrared & Millimeter Waves, Vol. 19, No. 2, p 251 (1998).
The insight associated with this new approach earned a concomitant theory of hierarchic accelerations and waves. Their studies and, resultant theories hold promise for a new particle accelerator technology which looks to requisite compactness for applications not only with the semiconductor fabrication techniques of the future but in a wide range of new procedures and products.
Practical applications of this advanced technology now are called for.
BRIEF SUMMARY OF THE INVENTION
The present invention is addressed to particle accelerator structures and systems and to methods for carrying out particle acceleration to achieve the formation of energized particle beams from within beam production spacial regions of constrained extent. A combination of distributed excitation currents of relatively higher (R.F.) frequencies joined with uniquely configured acceleration channel defining core assemblies achieves the requisite spacial constraints through a directional altering of particle accelerating pathways which are established with magnetic materials effective to carry required time-varying magnetic fields and to permit the formation of resultant electric fields. Turning or undulating particle trajectories or paths are achieved in one embodiment with the use of steering assemblies intercepting particle trajectories to directionally alter them from one dis

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Inductional undulative EH-accelerator does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Inductional undulative EH-accelerator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Inductional undulative EH-accelerator will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2912510

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.