Induction drive for induction driven conveyor including a...

Electrical generator or motor structure – Dynamoelectric – Linear

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C198S619000, C198S805000, C198S831000

Reexamination Certificate

active

06528908

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
Among other things, the present invention is related to induction drives for either straight or curved conveyors as well as methods of driving endless conveyor belts. Generally, pivotable magnets are interconnected serially and dimensioned to traverse a groove of the conveyor bed which can be either straight or curved. The series of pivotable magnets renders a virtual continuous magnetic body, and upon encountering the stator's electromagnetic field, a magnetic flux for driving the virtual continuous magnetic body is created. Select embodiments of the present invention incorporate free floating pivotable magnets housed in a holder attached to the nonmagnetic endless conveyor belt and dimensioned to ride the groove of the conveyor bed. Either the holder or the magnets can be dimensioned to ride in a track of the side wall of the conveyor bed's groove. And still in accordance with the present invention, the conveyor's direction can easily be reversed by altering the direction of the electric current flowing through the stator or stators while, at the same time, the pivotable magnets are dimensioned so they will not interlock with each other, as the conveyor's direction is reversed. In other words, the pivotable magnets are sized to move through the groove's curves, as well as about rollers that alters the course or direction of the conveyor belt.
2. Description of the Previous Art
a) U.S. Pat. No. 5,172,803—Lewin, discloses a conveyor belt having a magnetic motor linear drive. Endless belt (2) is spanned over downstream and upstream rollers (33) and (34). Belt (2) has an inner surface (10) provided at each of the reinforced zones (6), (7) and (8) with ridge (9) in which is imbedded permanent magnet (5). Under each magnet (5) is a respective stator (4) that can be energized by alternating current. Along with teaching rectangular, flat, cylindrical, ridged, particulate, meshed, powdered permanent magnets embedded into belt (2), the '803 Patent also describes embedding magnets (5) into ridge (58). According to Lewin, his permanent magnets are fixed to the linear surface of the belt in combination with a juxtaposed stator form a linear motor for advancing his upper stretch downstream.
b) U.S. Pat. No. 2,655,195—Curtis enables a rubberized magnetic conveyor belt. The '195 Patent's flexible resilient rubber-like layers 12 including the Curtis magnetic composition are impregnated into and disposed over layers 11 by frictioning or coating and serve to bond layers 11 into the belt carcass.
c) U.S. Pat. No. 2,684,753—Kolbe, et. al., enables a magnetic drive for conveyor belts. Each of the drive units (16) includes traction belt (20) that is guided over end rollers (22). One of the rollers (22) receives pulley belt (24) which is directed by pulley (26) that is driven by conventional electric motor (24) connected to standard gear reducer (30). Disposed below each roller (34) is the electromagnetic roll (38) wound about an armature curved to conform with roller (34).
d) U.S. Pat. No. 2,873,843—Wilson discloses a conveyor for moving ferromagnetic license plates. Magnets (32) are secured to the outer surface of inner belt (15) while outer belt (12) is provided with apertures (24). Drive motor (40) turns drive shaft (42) of pulley (26) which rotates inner conveyor (14). When Wilson's magnets (32) contact the surface of the license plates, the license plates are held on the conveyor via magnetic attraction.
e) U.S. Pat. No. 3,169,632—Kain enables a magnetic flexible cable that has been incorporated into the conveyor belt. The Kain magnet is mounted in a trough underneath the conveyor belt.
f) U.S. Pat. No. 3,620,357—Folkes teaches primarily a belt conveyor for passengers. The '357 Patent's belt is supported by magnetic repulsion. Magnetization is such that polarity of outer surface of layer (15) and the outer surface of layer (17) are the same. Thus, in use there is a distributed upward thrust on the belt. Primarily, Folkes utilizes barium ferrite for his magnetizable material distributed in his belt, but strontium as well as lead ferrite also are functional.
g) U.S. Pat. No. 4,643,298—Wallaart enables a magnetic bend for a chain conveyor. Wallaart's base includes two upright legs (2 & 3) that form the rails for the conveyor chain. Permanent magnets (7) are inserted into pockets (13) are formed on the underneath side of legs (2&3). Compressible plastic or rubber (8) between the closure strip (10) and magnet (7) ensure the magnets in pockets (13) are pushed upwards in the bend segment to enable the magnets to exert maximum force of attraction on the chain links (4).
h) U.S. Pat. No. 5,890,583—Garbagnati discloses a magnetic curve for a chain conveyor. Curve (10) includes base (11) and slide portion (12) to which chain conveyor (13) is fastened. Operation of the curve is accomplished by attaching ferromagnets (17) to guide (12) with screws (18).
i) U.S. Pat. No. 5,295,568—Saito, et. al., enables a passenger conveyor. Generally, the conveyor's treadboards move horizontally, but the conveyor can also be utilized as an inclined escalator. Regardless of which Saito embodiment is selected, the flattened linear motor's stators and moving members are positioned horizontally between the advance and return travel paths of the treadboards. Additionally, the '568 Patent teaches that moving member (12) is composed of a nonmagnetic conductor such as aluminum and copper, or a nonmagnetic conductor laminated on the surface of the magnetic material. Moving members (12) are fixed securely to reinforcement member (7B) mounted on the reverse side of treadboard (5). Stators (13) are supported by horizontal members (3) of frame (1) so as to be opposed to moving members (12
a
& 12
b
). Energizing stators (13) apply driving force to moving members (12) to move treadboards (5) along advance (4U) and return (4D) guide rails.
j) U.S. Pat. No. 3,788,447—Stephanoff describes a linear motor conveyor. Stephanoff's guide track (20) includes two halves that are spaced apart to define a slot (40) therebetween. Except for the curve from upper transport run (12a) to lower return run (12b), support surfaces (30 & 32) of guide (20) are horizontal. Vertical stem (18) of conveyor segment (16) is conducting non magnetic copper or aluminum so that a propulsive force will be generated on stem (18) by the traveling field in stators (62). Stators (62) are located on both sides of slot (40) or a laminated core (74) is mounted in guide (20) to provide the return path for electromagnetic flux. Propulsive force in registration with the linear motor stators causes the entire conveyor to circulate around the guide.
k) U.S. Pat. No. 5,027,942—Wallaart teaches a hinged chain conveyor. Rails 3 and 4 have permanent magnets 9 and 10 inserted into at least the bend sections of the rails.
l) U.S. Pat. No. 5,165,527—Garbagnati enables a chain conveyor that includes a magnetizable chain. Magnets (19) are inserted into grooves (15 & 16) of shoulders (11 & 12) of guide track (10) to assist in controlling ferromagnetic chain (14) as the chain moves through bends of the conveyor.
m) U.S. Pat. No. 5,199,551—Wallaart, et. al., discloses a bend segment for a chain conveyor. Permanent magnets (8) are arranged in chambers of plastic bend segment.
n) U.S. Pat. No. 5,298,804—Ecker, et. al., enables a curved conveyor belt with supporting frame devoid of belt band rollers. On the opposite side of stator (12), guide ducts (10 & 11) include recess (14) through which running wheel carrier (15) grasps carrying bar (16) and wheels (25 & 26). Wheel carrier (15) is connected to side edges (18 & 19) of belt band (2). Drive is applied via linear motor system (4) that includes stator (12) and magnet (23) that is integrated with crossbar (22) of carrying spar (16).
o) U.S. Pat. No. 3,426,887—Ward, et. al., among other things, discloses the use of introducing a metal strip or applying metallic particulars to the lateral edges of a nonmetallic con

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Induction drive for induction driven conveyor including a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Induction drive for induction driven conveyor including a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Induction drive for induction driven conveyor including a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3051056

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.