Indoor GPS clock

Data processing: vehicles – navigation – and relative location – Navigation – Employing position determining equipment

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S214000, C375S357000

Reexamination Certificate

active

06725157

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates generally to GPS clocks and more particularly to an indoor GPS clock using long integration periods for acquiring and tracking GPS signals lower than about −143 dBm and providing disciplined frequency and time standard signals.
2. Description of the Prior Art
Conventional GPS positioning receivers provide GPS-based time as a byproduct of the resolution of a three dimensional GPS-based location. Typically, this time is issued in the form of a data packet that identifies the GPS-based times of the pulses of a one pulse per second (1 PPS) output signal. However, the accuracy for such time is limited by the cycle period of the local reference oscillator in the GPS receiver and any uncalibrated electrical length that the signal travels before it is used. There are several GPS timing applications where these limitations are not acceptable. Therefore, GPS timing applications commonly require a higher frequency signal, for example 10 MHz, for use as an accurate time base for maintaining an internal time standard. In order to meet the needs of these applications, a special type of GPS receiver, termed a GPS clock, has been developed. GPS clocks use supplementary techniques, such as clock bias feedback, for providing an output signal having a frequency that closely tracks the frequency of the GPS signal.
In some cases accurate time and/or frequency are required at a user location that is inside of a building. It is well-known that GPS receivers do not function well within a building because the building attenuates the GPS signal to a level that is too low for acquisition and/or tracking. It is sometimes possible to avoid this problem by placing the GPS signal antenna outdoors or by a window with a clear sky view and then conducting an amplified antenna output signal or the frequency and time signal to where it is needed. However, there are certain circumstances where this is impractical.
A clear-view GPS signal available to a GPS antenna on earth from a GPS satellite is specified as −160 dBW (−130 dBm) by the GPS system specification ICD-GPS-200 Rev C published by Arinc Research Corporation of El Segundo, Calif. published Oct. 10, 1993 and last revised Oct. 11, 1999. Misra and Enge in “Global Positioning System” ISBN 0-9709544-0-9 page 288 also show −160 dBW (−130 dBm) as received power available to an isotropic antenna from a satellite at the zenith. Conventional GPS receivers acquire GPS signals as low as −130 dBm using a signal integration period matching the C/A PRN code epoch period of one millisecond. In addition, it is known by those skilled in the art that an integration period matching the GPS bit time of 20 milliseconds can be used for achieving a processing gain of 13 dB in order to acquire and/or track GPS signals as low as about −143 dBm.
The attenuation of the building will vary a great deal depending upon the type of building and the depth within the building. However, it is typically true that a building attenuates a GPS signal by more than 13 dB so that the GPS signal is lower than the signal acquisition that is achievable with a 20 millisecond integration. Recently, many workers have applied a great deal of energy to inventing techniques for receiving low level (that is more than 13 dB lower than open sky) signals. Unfortunately, to date these techniques have not been applied in an indoor GPS clock that is capable of providing the frequency and time accuracies that are required.
One of the problems that must be resolved for low GPS signal levels is the problem of GPS signal carrier tracking. Conventional GPS receivers employ closed loop carrier phase or carrier frequency feedback corrections for tracking a GPS signal. However, below 27 dB-Hz C/N
0
(−143 dBm referred to the antenna) and 24 dB-Hz C/N
0
(−146 dBm referred to the antenna) typical GPS carrier phase and frequency lock loops, respectively, are not able to lock reliably. Existing military type GPS receivers have used a technique of carrier aiding by Doppler calculations. However, techniques used in military receivers are not directly applicable to a high performance GPS clock because a military GPS receiver must operate in a high dynamic environment whereas a GPS clock is expected to operate in an environment that is stationary. Furthermore, the GPS clock must provide an accurate frequency standard signal as an output that tracks the carrier frequency of the GPS signal.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide an indoor GPS clock capable of using low level GPS signals for providing accurate GPS-based frequency and time.
Briefly, the indoor GPS clock of the present invention is a novel combination of features using a processing gain of greater than 13 dB for acquiring and tracking low level GPS signals for providing a highly accurate GPS-based frequency. In a base coherent embodiment, the indoor GPS clock uses GPS data bit length (20 millisecond) coherent integrations for acquisition and tracking of low level GPS signals. In an extended coherent embodiment, the indoor GPS clock uses coherent integration periods longer than the GPS bit data for acquisition of low level GPS signals. In a coherent-incoherent embodiment, the indoor GPS clock incoherently combines coherent integration periods for acquisition of low level GPS signals. The low level GPS signals are then tracked with carrier-less tracking using GPS data bit length coherent integration periods. A clock bias feedback loop provides feedback for disciplining frequency and time signals. A holdover driver compensates for drift in the disciplined frequency and time signals for at least several hours in the absence of the GPS signal.
An advantage of the present invention is that an accurate GPS-based frequency is provided within a building where GPS signal levels are lower than about −143 dBm.
These and other objects and features of the present invention will no doubt become obvious to those of ordinary skill in the art after having read the following detailed description of the preferred embodiments which are illustrated in the various figures.


REFERENCES:
patent: 4849993 (1989-07-01), Johnson et al.
patent: 5861842 (1999-01-01), Hitch et al.
patent: 6289041 (2001-09-01), Krasner
patent: 6400314 (2002-06-01), Krasner
patent: 6466164 (2002-10-01), Akopian et al.
patent: 6510387 (2003-01-01), Fuchs et al.
patent: 6512479 (2003-01-01), Sahai et al.
patent: 6529160 (2003-03-01), Jandrell
David M. Lin & James B. Y. Tsui, “An Efficient Weak Signal Acquisition Algorithm for a Software GPS Receiver”, Proceedings of Institute of Navigation Global Positioning System (ION GPS) conference, Sep. 11-14, 2001, Salt Lake City, Utah, pp. 115-136.
Mark Moeglein & Norman Krasner, “An Introduction to SnapTrack™ Server-Aided GPS Technology”, Proceedings of Institute of Navigation Global Positioning System (ION GPS) conference 1998, pp. 333-341.
“Guidelines for the Global Positioning System (GPS) Receiver Application Module”, GPS-GRAM-001A (Internet), Headquarters, Space and Missile Systems Center NAVSTAR GPS Joint Program Office, El Segundo, California, Feb. 24, 1998, pp. 12-86.
“ThunderBolt™ GPS Disciplined Clock Manual”, Version 3.0, Sep., 2000, Trimble Navigation Limited, Sunnyvale, California.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Indoor GPS clock does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Indoor GPS clock, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Indoor GPS clock will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3259034

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.