Independent photoelectric artificial retina device and method of

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

623 4, 623 24, 128898, 607116, A61N 105

Patent

active

055564232

ABSTRACT:
Microscopic photodiode devices with semi-transparent surface electrodes are combined with a liquid or other suitable vehicle. Together they are injected into the subretinal space of the eye. The purpose of these microphotodiode photovoltaic devices is to transduce incident light into electric current which stimulate the overlying cellular layers of the retina. In persons suffering from visual dysfunction due to outer retinal layer damage, such devices may allow useful formed artificial vision. These independent surface electrode microphotodiodes (ISEMCPs) may be in the shape of micro-spheres, micro-cylinders or other micro-shapes. An off-center embedded ferromagnetic layer will confer magnetic susceptibility to the ISEMCPs. A magnetic field applied in the vicinity of the eye will align the ISEMCPs within the subretinal space directing their photoactive surface toward incident light. Alternatively ISEMCPs may be embedded, prealigned, in a transparent flexible sheet permeable to nutrients and oxygen before implantation into the subretinal space. Such a sheet will allow passage of biological nutrients and oxygen around the ISEMCPs. This sheet may also dissolve leaving behind ISEMCP units lying separately, or in an arranged pattern produced by a surrounding mesh. ISEMCPs may be of the PiN or NiP type or a combination of both in a single unit. An electric capacitor layer may also be incorporated into the ISEMCP device (ISEMCP-C) to allow charge storage during exposure to light and charge release in darkness producing an opposite polarity current. This last modification will allow the generation of hyperpolarizing currents in light and depolarizing currents in darkness which is necessary to produce formed vision of light and dark images.

REFERENCES:
patent: 2760483 (1954-10-01), Tassicker
patent: 3594823 (1971-07-01), Collins
patent: 3628193 (1971-12-01), Collins
patent: 3766311 (1973-10-01), Boll
patent: 3848608 (1974-11-01), Leonard
patent: 3914800 (1975-10-01), Collins
patent: 4251887 (1981-02-01), Anis
patent: 4272910 (1981-06-01), Danz
patent: 4551149 (1985-11-01), Sciarra
patent: 4600004 (1986-07-01), Lopez et al.
patent: 4601545 (1986-07-01), Kern
patent: 4628933 (1986-12-01), Michelson
patent: 4750498 (1988-06-01), Graham
patent: 4836202 (1989-06-01), Krasner
patent: 5016633 (1991-05-01), Chow
patent: 5024223 (1991-06-01), Chow
patent: 5109844 (1992-05-01), de Juan et al.
Exhibit A is an article published in Science News, Feb. 2, 1974, vol. 105, No. 5, p. 105.
Exhibit B is an article published in Science, Jul., 1981.
Granit R., Helme T. "Changes In Retinal Excitability Due To Polarization And Some Observations On The Relation Between The Processes in Retina And Nerve", J. Neurophysiol, 1939;; 2:556-565.
Knighton R. W. "An Electrically Evoked Slow Potential Of The Frog's Retina. I. Properties Of Response", J. Neurophysiol, 1975; 38-185-197.
Brindley, G. S. "The Site Of Electrical Excitation Of The Human Eye", J. Physiol, 1955; 127-189-200.
Brindley G. S., "Beats Produced By Simultaneous Stimulation Of The Human Eye With Intermittent Light And Intermittent Or Alternating Electric Current", J. Physiol, 1962; 164: 156-167.
Potts, A M, Inoue J., Buffum D., "The Electrically Evoked Response Of The Visual System (EER)", Invest Ophthalmol Vis Sci., 1968; 7:269-278.
Humayun M. S., Propst R. H., Hickingbotham, D., deJuan E. Jr., Dagnelie G., "Visual Sensations Produced By Electrical Stimulation Of The Retinal Surface In Patients With End-Stage Retinitis Pigmentosa (RP)", ARVO Abstracts, Invest Ophthalmol Vis. Sci., 1993; 34 (Suppl):835.
Tasman E., ed. Duane's Foundations of Clinical Ophthalmology, vol. 3, Philadelphia, Lippincott, 1992; chapter 13:20-25, chapter 60:1-12.
Stone J. L., Barlow, W. E., Humayun, M. S., deJuan E., Jr., Milam, A. H., "Morphometric Analysis Of Macular Photoreceptor And Ganglion Cells In Retinas With Retinitis Pigmentosa", Arch Ophthalmol, 1992; 110:1634-1639.
Pagon, R. A., "Retinitis Pigmentosa", Surv Ophthalmol,. 1988; 33:137-177.
Eagle, R. C., Lucier, A. C., Bernardino, V. B., et al., "Retinal Pigment Epithelial Abnormalities In Fundus Flavimaculatus", Ophthalmol, 1980; 87:1189-1200.
Hagins, W. A., Penn, R. D., Yoshikami, S. "Dark Current And Photocurrent In Retinal Rods", Biophys J., 1970; 10:380-412.
Tomita, T., "Electrical Activity Of Vertebrate Photoreceptor", Q Rev Biophys., 1970; 3:179-222.
Baylor, D. A., Fuortes, M. G. F., "Electrical Responses Of Single Cones In The Retina Of The Turtle", J Physiol, 1970; 207:77-92.
Chow, A. Y., "Electrical Stimulation Of The Rabbit Retina With Subretinal Electrodes And High Density Microphotodiode Array Implants", ARVO Abstracts, Invest Ophthalmol Vis Sci. 1993; 34 (Suppl):835.
Rubin, M. L., Optics for Clinicians, Gainsville, Traid Scientific Publishers, 1974; 119-123.
Boettner, E. A, Wolter, J. R. "Transmission Of The Ocular Media", Invest Ophthalmol, 1962; 1:776-783.
Shannon, R. V. "A Model Of Safe Levels For Electrical Stimulation", IEEE Tarns Biomed Eng., 1992; 39:424-426.
Armington, J. C., Brigell, M. "Effects Of Stimulus Location And Pattern Upon The Visually Evoked Cortical Potential And The Electroretinogram", Int J. Neurosci, 1981; 14:169-178.
Fenwick, P. B. C., Stone, S. A. Bushman, J., Enderby, D., "Changes In The Patter Reversal Visual Evoked Potential As A Function Of Inspired Nitrous Oxide Concentration", Electroencephalogr Clin Neurophysiol, 1984; 57178-183.
Rovamo, J., Virsu, A., "An Estimation And Application Of The Human Cortical Magnification Factor", Exp Brain Res., 1979; 37:495-510.
Dowling, J. E., Ripps, H, "Visual Adaptation In The Retina Of The Skate", J Gen Physiol, 1970; 56:491-520.
Humayun, M., Propst R., De Juan, E., et al. "Bipolar Surface Electrical Stimulation Of The Vertebrate Retina", Arch Ophthalmol, 1994; 112:110-116.
Narayanan, M. V., Rizzo, J. F., Edell, D., et al. "Development Of A Silicon Retinal Implant: Cortical Evoked Potentials Following Focal Stimulation Of The Rabbit Retina With Light And Electricity", ARVO Abstracts, Invest Ophthalmol Vis Sci., 1994; 35(Suppl):1380.
Dawson, W. W., Radtke, N. D., "The Electrical Stimulation Of The Retina by Indwelling Electrodes", Invest Ophthalmol Vis Sci., 1977; 16:249-252.
Brady, G. S., Clauser, H. R., Materials Handbook, Thirteenth Edition, New York, McGraw-Hill, 1991; 739-740.
Paton, D., Goldberg, M. F., Management Of Ocular Injuries, Philadelphia, W. B. Saunders Co., 1976; 134-135.
Terr, L. I., Linthicum, F. H., House, W. F., "Histopathologic Study Of The Cochlear Nuclei After 10 Years Of Electrical Stimulation Of The Human Cochlea", Am J Otol., 1988,; 9:1-7.
Agnew, W. F. McCreery, D. B. Neural Prostheses Fundamental Studies, Englewood Cliffs, Prentice Hall, 1990; 25-65.
Curcio, C. A., Sloan, K. R., Kaliha, R. E. Hendrickson, A. E., "Human Photoreceptor Topography", J of Comparative Neurology, 1990; 292:497-523.
Brown, et al., "Monolithically Integrated 1 X 12 Array Of Planar InGaAs/InP Photodiodes", Journal of Lightwave Technology, vol. LT-4, No. 3, Mar. 1986, pp. 283-286.
Melen, et al. "A Transparent Electrode CCD Image Sensor For A Reading Aid For The Blind", IEEE Journal Of Solid-State Circuits, vol. SC-9, No. 2, Apr. 1974, pp. 41-48.
Kataoka, "An Attempt Towards An Artificial Retina: 3-D IC Technology For An Intelligent Image Sensor", Transducers '85: International Conference On Solid-State Sensors And Actuators 1985, pp. 440-442.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Independent photoelectric artificial retina device and method of does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Independent photoelectric artificial retina device and method of, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Independent photoelectric artificial retina device and method of will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-410303

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.