Independent hardware thermal sensing and monitoring

Communications: electrical – Condition responsive indicating system – Specific condition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C340S588000, C713S323000, C713S324000

Reexamination Certificate

active

06172611

ABSTRACT:

BACKGROUND
1. Field of the Invention
The present invention relates to temperature monitoring techniques used in electrical and/or information processing systems such as computer systems and microprocessors.
2. Description of the Related Art
High temperatures may subject electrical and/or information processing systems to a thermal runaway condition resulting in failure of one or more electronic components of such systems. For example, information processing systems often include one or more microprocessors which can be damaged by high temperatures. Such component failure often results in expensive repair or replacement of the components or of the entire system. Proper temperature monitoring is therefore critical to the continued operation of such systems, and great importance is placed on early detection of potentially damaging heat buildup.
Modern information processing systems such as computer systems and/or microprocessors often include temperature monitoring devices. For example, personal computer systems including the Pentium™ microprocessor or Pentium II™ microprocessor available from Intel Corporation of Santa Clara, Calif. often include temperature monitoring devices because the Pentium™ microprocessor or Pentium II™ microprocessor generates enough heat that thermal monitoring is required to prevent expensive failures. Real-time monitoring is especially important because of the possibility that changing ambient conditions such as in portable computer systems may increase the likelihood of thermal overload. Subsequent higher performance generations of microprocessors have dramatically exacerbated the problem of possible thermal overload.
A personal computer industry standard specification known as the Advanced Configuration and Power Management Initiative (ACPI) has been developed to outline requirements for thermal management. ACPI version 1.0 dictates that there be four thermal states: “none,” “passive,” “active,” and “critical.” In a personal computer system a “none” thermal state indicates that the thermal situation requires no special action. A “passive” thermal state typically indicates, for example, that the microprocessor(s) should be slowed down to reduce the thermal load. An “active” thermal state indicates that a fan or some other active cooling device be started. A “critical” thermal state indicates that the system is in thermal runaway and must be shut down immediately to prevent damage. ACPI also allows a software operating system to control the setting of temperature thresholds to determine the limits of the four prescribed thermal zones or levels. However, if the operating system crashes or malfunctions, the temperature of the hardware system could become unmonitored, and the computer system could become vulnerable to thermal damage.
In one temperature monitoring technique, an information processing system includes a hardware programmable thermal management integrated circuit (IC) having an on-chip, solid state temperature sensor embedded in its silicon die. The sensor senses the temperature of its own die and outputs a signal based on the sensed temperature value. Typically the thermal management IC will have one or more hardware programmable (e.g., external resistor programmed) temperature thresholds to implement the above discussed thermal zones. Using such a thermal management IC provides the advantage of an inherent reliability in that erroneous software operation does not jeopardize the thermal protection. One disadvantage to using such an IC is that the thermal management IC must be placed physically close to key integrated circuits such as a CPU for thermal coupling because the temperature sensing element is on the thermal management IC. This can be inconvenient and sometimes impossible. Another disadvantage is that this type of device is not software programmable and is therefore not in compliance with the ACPI specification.
In another temperature monitoring technique, an information processing system includes a software programmable thermal management IC having an on-chip solid state temperature sensor. Such an implementation typically includes a serial port whereby the system software can access temperature data and manipulate temperature thresholds on the fly. Such an implementation advantageously allows the system to intelligently respond to changing conditions. Also, the system may be in compliance with the ACPI specification if there are enough thresholds available to define all of the prescribed thermal levels. However, the thermal management IC also must be located so that there is a good thermal coupling to the CPU because the temperature sensing element is on the thermal management IC.
In another temperature monitoring technique, an information processing system includes a software programmable thermal management IC with off-chip sensor input and multiple thresholds. This is a desirable option because it provides increased flexibility and performance. Performance is enhanced because the sensing element (e.g., a junction diode) is located separate from the thermal management IC and is typically located on the CPU die. The thermal management IC typically connects to two pins on the CPU to access the sensing element. This allows the temperature measurement to be much more accurate because of a better thermal coupling between the CPU and the sensing element while allowing the system designer more flexibility in where the thermal management IC is located within the information processing system.
SUMMARY
It has been discovered that a thermal management technique using a software and hardware programmable integrated circuit configured to receive a remote temperature sensing signal provides the advantages of remote temperature sensing, the flexibility of software programmability, and the reliability of hardware programmability. Providing coexistent hardware and software based thermal management provides a temperature alarm with a software selectable thresholds and a critical temperature alarm with a hardware programmable threshold which requires no software supervision and is, therefore, fail-safe in the event of software malfunction, and which uses no external components such as resistors for programming. A user-programmable threshold is non-volatile in the event of power loss. The integrated circuit can be used alone or in conjunction with a software-controlled alarm system. The integrated circuit can interface to an off-chip and/or on-chip sensor element. Such a thermal management technique and circuit therefor may be in compliance with the ACPI standard.
In one embodiment, an apparatus for monitoring a thermal state of a system includes a thermal management integrated circuit (IC). The thermal management IC is coupled to receive a remote temperature signal. The remote temperature signal is indicative of a system temperature. The thermal management IC includes a software programmable temperature threshold setpoint, and a hardware programmable temperature critical threshold setpoint.
In another embodiment, a thermal warning circuit for indicating the thermal state of a system includes a thermal management integrated circuit (IC) coupled to receive a first temperature signal. The thermal management IC includes at least one software programmable temperature threshold setpoint and a hardware programmable temperature critical setpoint. The at least one software programmable temperature threshold setpoint is for indicating at least one thermal event temperature. The thermal warning circuit indicates at least one system state when the first temperature signal indicates a temperature above the at least one thermal event temperature. The hardware programmable temperature critical setpoint is for indicating a system critical temperature. The thermal warning circuit indicates a system critical state when the first temperature signal indicates a temperature above that of the system critical temperature.


REFERENCES:
patent: 5713030 (1998-01-01), Evoy
patent: 5920264 (1999-07-01), Kim et al.
patent: 5978864 (1999-11-01), Hetherington et al.
patent: 5

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Independent hardware thermal sensing and monitoring does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Independent hardware thermal sensing and monitoring, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Independent hardware thermal sensing and monitoring will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2469385

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.