Independent conveyor system for conveying linked food products

Conveyors: power-driven – Conveyor system for establishing and moving a group of items – Subdivides continuous item stream into longitudinally spaced...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C198S676000, C452S183000

Reexamination Certificate

active

06786321

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to the production of linked food products, and more specifically to conveyor equipment for conveying linked food products, such as hot dogs or sausages, output from a linker that makes the linked food product.
2. Discussion of the Related Art
In the production of linked food products, such as hot dogs or sausages, it is well known to utilize conveyors to convey the food product to different points in the production process. Typically, a conventional sausage making machine or “linker” makes linked sausage or hot dog chains. For example, the linker pumps a filling comprising, e.g., meat or other proteinaceous food products, along with flavorings and other ingredients into an elongated casing, which is pinched and/or twisted at regular intervals to form individual links and then delivered through a horn.
At a loading station, hooks suspended from a moving conveyor chain are positioned to receive the links output from the horn. Once loaded, the links are carried by the conveyor to another location. The links are removed from the conveyor at an unloading station. In a typical conveyor, any conveyor stoppages at the unloading station to unload a given sausage chain also stops the conveyor at the loading station. Thus, the operation of the linker is stopped. For example, the linker would have to stop outputting a sausage chain temporarily or produce a sausage chain during periods of continuous conveyor movement. Again, even though delays resulting from conveyor stoppages at the unloading station are short, they result in a great inefficiency at the linker over time. Therefore, it is desired to minimize stoppage times at the unloading station.
Additionally, at the conventional linker, once a particular elongated casing is filled and output to the conveyor, the loaded chain is “tied off” at its ends to prevent filling from leaking out of the end of the casing. Movement of the conveyor is typically stopped to tie off the casing, which may take an operator several seconds. During interruption of the conveyor movement, the loaded sausage chain is delayed from being conveyed to other portions of the production cycle. With sausage making machines that can fill a 140-foot casing in about 25 seconds, this stoppage occurs frequently and results in inefficiency in the conveyor output.
Accordingly, there is a need for a conveyor system that will more efficiently load, convey and unload linked food products.
SUMMARY OF THE INVENTION
The invention provides a conveyor system for efficiently transporting or conveying a chain of linked food products, such as hot dogs or sausages. The linked chain is received onto a set of link supports of a conveyor at a loading station. The linked chain is then transported to an unloading station where it is unloaded from the set of link supports.
In preferred form, the conveyor system includes two or more independently driven conveyors, each configured to load linked chains of food product from a linker at a shared loading station and transport the linked chains to a shared unloading station to be removed.
The preferred independently driven and coordinated conveyors allow for independent operation of the loading and unloading processes at the loading station and the unloading station. For example, according to one embodiment, while one linked chain is being loaded onto a given conveyor at the loading station, another chain is unloaded from the other conveyor at the unloading station. Thus, in a broad sense, the loading operation of a given conveyor is not limited or affected by interruptions in movement of the other conveyor, e.g., interruptions in conveyor movement during unloading. Similarly, the unloading operation of a given conveyor is not limited or affected by interruptions in movement of the other conveyor, e.g., interruptions in conveyor movement during loading.
In preferred embodiments, since the linker can load the next linked chain on the other conveyor while a given linked chain is being unloaded (i.e., the linker does not have to wait during the unloading process), the operation of the linker is more continuous; and thus, more efficient. Additionally, since the linker does not have to wait for the unloading process, the allowable time for the unloading process is increased without an increase in the production cycle time. In other words, in one embodiment, the time of chain unloading is eliminated from the production cycle, increasing the linker machine efficiency. Thus, in this embodiment, the time to unload a given linked chain from a given conveyor can be made up to approximately equal to the time to load a given chain onto another conveyor. Since the allowable time for unloading is increased, the unloading process can be automated, as in preferred embodiments. However, it is understood that the unloading process may also be manually performed by an operator. It is also understood that even though the unloading time may be increased, in many embodiments, the unloading time is still minimized for further increases in linker efficiency. In these embodiments, it is desired to minimize the time taken to transfer and unload a given linked chain. In preferred embodiments, by eliminating the unloading time from the production cycle, approximately a 10-35% increase in production output of the conveyor system is realized without an increase in labor costs in comparison to a single conveyor system.
Additionally, the independently driven conveyors are coordinated such that the sets of link support members of the conveyors are separated by a desired gap in order to ensure that the sets of link support members do not collide with each other. In one embodiment, such a gap or separation is provided such that while one conveyor is loading, another conveyor is unloading. However, in some embodiments, it is desired to minimize the gap between sets of link support members, especially at the beginning of the loading station. This allows for the linker to operate more continuously since it does not have to wait for a previously loaded linked chain to be unloaded at an unloading station and the set of link support members to return to a loading position, e.g., the linker may create and load the next linked chain shortly after the previously loaded linked chain has left the loading station.
In preferred embodiments, the gap between sets of link support members is variable at different points of the conveyor path, such that as soon as possible after a linked chain has been loaded at the loading station, the next set of link support members is in position at the loading station to load the next linked chain. In these embodiments, the time to convey a given linked chain to the unloading station, unload the linked chain and then convey the set of link support members back into position to receive the next linked chain at the loading station is set to be no more than the time it takes to load a given linked chain onto a given set of link support members. This will ensure that a set of link support members is in position to receive the next linked chain from the linker as soon as the linker is able to produce another linked chain; therefore, providing near continuous linker operation. However, the gap must still be maintained such that the unloaded set of link support members does not collide with a set of link support members being loaded at the linker, i.e., the set of link support members approaching the loading station after unloading may have to be stopped as it approaches the loading station to avoid a collision. Again, since the loading process on a given conveyor is not affected by interruptions in movement of the other conveyor (e.g., due to unloading or maintaining a gap), the linker operation is not interrupted while producing a linked chain and another set of link support members is in position to receive the next linked chain to be output from the linker. Thus, preferably, the linker operates near continuously while independently of the other processes occurring on the c

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Independent conveyor system for conveying linked food products does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Independent conveyor system for conveying linked food products, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Independent conveyor system for conveying linked food products will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3196274

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.