Increasing the FVII sensitivity of a thromboplastin reagent

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving blood clotting factor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S184000, C435S188000, C436S069000, C530S384000

Reexamination Certificate

active

06376209

ABSTRACT:

The present invention relates to a process for increasing the FVII (Factor VII) sensitivity of a thromboplastin reagent by means of heat treatment.
Quick's thromboplastin time (PT) is employed as a test for screening for a deficiency in coagulation factors in patient blood. The PT is also used to monitor therapy with oral anticoagulants. The preferred PT for normal blood donors is 10-14 seconds. The preferred PT for factor VII-deficient plasmas should be more than 60 seconds. The FVII sensitivity is therefore defined as the ratio of the coagulation time of the FVII-deficient plasma and the coagulation time for normal blood donors.
The invention describes a process for increasing the factor VII sensitivity of thromboplastin reagents by increasing the PT for factor VII-deficient plasmas without significantly altering the PT for normal plasmas.
Active thromboplastin induces coagulation in plasma and is composed of a lipid component and a protein component. The protein, i.e. tissue factor, is membrane-bound and is found in many different tissues. The binding between the protein and the lipid is based on hydrophobic interactions and is Ca
2+
-independent. The protein moiety is composed of a glycoprotein having a molecular weight of 43-53 kDa. One molecule of tissue factor is able to bind to one molecule of FVII or FVIIa. The binding of FVII/FVIIa to tissue factor is Ca
2+
-dependent. The complex composed of lipid, tissue factor and FVIIa cleaves FX to form FXa and thereby finally elicits coagulation by means of activating prothrombin.
The onset of coagulation in a plasma at from 10 to 14 sec. after adding a thromboplastin reagent indicates that the coagulation system is intact. An increase in the coagulation time points to an impairment. Impairments can occur as a result of the concentrations of one or more coagulation factors being too low. Thromboplastin reagents of varying origin frequently differ in their sensitivity for indicating the deficiency of particular factors. This can sometimes be due to the carry-over of small quantities of the factors to be determined into the reagent. Common methods for specifically removing small quantities of protein are, inter alia, immunoadsorption or, in the case of the vitamin K-dependent coagulation factors such as FII, VII, IX and X, barium sulfate adsorption (WO 90/05740). In the case of reagents of human origin, it is frequently only the sensitivity with regard to FVII which is inadequate.
Proteases, i.e. factors VIIa, IXa, Xa, XIa and XIIa, and plasma kallikrein and thrombin, are essential factors of the coagulation cascade.
Disadvantages of the previously described methods are, firstly, that FVII binds to tissue factor and the yield of tissue factor which is achieved by such an adsorption method is therefore reduced and, secondly, that both methods demand a substantial input of equipment and time, particularly on a production scale.
In the present invention, it is demonstrated that it is surprisingly possible, under defined conditions, to selectively inhibit the residual FVIIa activity of the reagent and consequently to arrive at the desired result in a simple manner without impairing the tissue factor or other factors of the coagulation cascade. The ratio, which is termed FVII sensitivity, of the coagulation time of the FVII-deficient plasma to the coagulation time of a normal plasma is preferably >4, particularly preferably >6 and very particularly preferably >10.
Factor VIIa possesses a protease activity and belongs to the serine protease class, as do the other coagulation factors IXa, Xa, XIa, XIIa, plasma kallikrein and thrombin. Another feature common to these coagulation factors is that they are initially present in zymogenic form and protein bonds have to be cleaved for their protease activity to be displayed.
A large number of protease inhibitors which at least inhibit the active forms of these zymogens, e.g. thrombin, have been described (W.B. Lawson et al., 1982, Folia Haematol. Leipzig 109 (1982) 1, pp. 52-60). They include sulfonyl fluorides, such as phenylmethylsulfonyl fluoride (PMSF), p-aminoethylbenzenesulfonyl fluoride (AEBSF) and 4-aminophenylmethanesulfonyl fluoride (p-APMSF), organofluorophosphates, such as diisopropyl fluorophosphate (DFP), chloromethyl ketones and also peptides, such as leupeptins or proteins of the serpin family, such as C1 inhibitor, antithrombin III and aprotinin.
The protease inhibitors suffer from the disadvantage that, in the PT, they inhibit the coagulation factors IXa, Xa, XIa, XIIa, plasma kallikrein and thrombin in the sample to be determined in addition to inhibiting the factor FVII or FVIIa which has been carried over. On this basis, they would prolong coagulation time and give a false impression of a pathological value. It is to be expected, therefore, that these inhibitors would not be suitable for being used in a PT reagent. Surprisingly, however, it is possible to employ these inhibitors under specific conditions without prolonging the coagulation times of the sample; however, the FVII sensitivity of the reagent is nevertheless improved.
Another option for inhibiting the enzymic activity of a protein is that of preparing specific antibodies which inhibit the active center of the protein. It is possible to obtain a variety of antibodies against coagulation factor VII, including at least one polyclonal antibody which inhibits the enzymic activity of FVII/FVIIa. Simply adding the antibody to a PT reagent would be disadvantageous since the antibody also inhibits the FVII/FVIIa of the sample. In the present invention, it is demonstrated that there is, surprisingly, a concentration range for adding the anti-FVII antibody in which the coagulation time of a normal plasma is not prolonged but that of an FVII-deficient plasma is prolonged markedly, such that the FVII sensitivity of the reagent is substantially increased.
It has also been previously reported that serine pro-teases can be oxidatively inhibited (S. E. Lind et al., 1993, Blood 82, 5 15522-1531). This method has the disadvantage that the fatty acids of the phospholipids can be oxidized in addition to the disadvantage that the coagulation cascade serine proteases in the sample are inhibited (Dasgupta, A. et al., Live Science 1992, 50, 875-882). The oxidation products which are produced in this connection likewise inhibit the PT (T. W. Barrowcliffe et al., 1975, Thrombos. Diathes. haemorrh. 33, 271).
Surprisingly, however, the oxidation process can be controlled such that it is possible to disregard the undesirable side reactions, i.e. while the coagulation time of normal plasmas is not prolonged, the FVII sensitivity of the reagent is improved. Suitable oxidizing agents are hypochlorite, hydrogen peroxide, permanganate and manganese dioxide. Many antioxidants, such as ascorbic acid, thiols, such as glutathione, acetyl cysteine, dithioerythreitol and tocopherols and tocopherol derivatives, such as di-tert-butyl-p-hydroxyanisole (BHA), di-tert-butyl-p-cresol (BHT), Trolox and propylgallate, are able to exert an oxidative effect in the presence of metal ions. The metal ions which catalyze the oxidation include, in particular, iron, copper and zinc. The metal-catalyzed oxidation is particularly suitable for inhibiting residual FVII/FVIIa activities.
The process of the present invention uses simple methods for heat-treating the tissue extract selectively; without thereby restricting ourselves to one particular reaction mechanism, it might be possible to explain the efficacy of the process on the basis that the specific heat treatment removes residual FVII/FVIIa activities. The heat treatment is advantageously carried out for a short time at high temperatures.
At low temperatures of between +40 and +60° C., inactivation of the FVII activities depends on a number of factors, inter alia the dimensions and the thermal conductivity of the vessel employed and the solution used, some of which cannot be controlled. The heating time can also vary widely. The heating temperature is advantageously between +

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Increasing the FVII sensitivity of a thromboplastin reagent does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Increasing the FVII sensitivity of a thromboplastin reagent, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Increasing the FVII sensitivity of a thromboplastin reagent will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2932774

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.