Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Recombinant dna technique included in method of making a...
Reexamination Certificate
2000-03-22
2001-07-10
LeGuyader, John L. (Department: 1635)
Chemistry: molecular biology and microbiology
Micro-organism, tissue cell culture or enzyme using process...
Recombinant dna technique included in method of making a...
C536S023100, C536S023700, C435S069100, C435S252310, C435S320100
Reexamination Certificate
active
06258563
ABSTRACT:
FIELD OF THE INVENTION
The present invention generally relates to expression of proteins in gram-positive microorganisms and specifically to the gram positive microorganism secretion factor SecDF. The present invention provides expression vectors, methods and systems for the production of proteins in gram-positive microorganisms.
BACKGROUND OF THE INVENTION
Gram-positive microorganisms, such as members of the group Bacillus, have been used for large-scale industrial fermentation due, in part, to their ability to secrete their fermentation products into the culture media. In gram-positive bacteria, secreted proteins are exported across a cell membrane and a cell wall, and then are subsequently released into the external media usually obtaining their native conformation.
Secretion factors from Gram-positive microorganisms which have been identified and reported in the literature include SecA (Sadaie Y., Takamatsu h., Nakamura k., Yamane k.; Gene 98:101-105, 1991)., SecY (Suh J. -W., Boylan S. A., Thomas S. M., Dolan K. M., Oliver D. B., Price C. W.; Mol. Microbiol. 4:305-314,1990)., SecE (Jeong S., Yoshikawa H., Takahashi H.; Mol. Microbiol. 10:133-142, 1993), FtsY an FfH (PCT/NL 96/00278), and PrsA (WO 94/19471).
By contrast, in the gram-negative microorganism,
E.coli
, protein is transported to the periplasm rather than across the cell membrane and cell wall and into the culture media.
E.coli
has at least two types of components of the secretory mechanism, soluble cytoplasmic proteins and membrane associated proteins. Reported
E.coli
secretion factors include the soluble cytoplasmic proteins, SecB and heat shock proteins; the peripheral membrane-associated protein SecA; and the integral membrane proteins SecY, SecE, SecD and SecF.
In spite of advances in understanding portions of the protein secretion machinery in procaryotic cells, the complete mechanism of protein secretion, especially for gram-positive microorganisms, such as Bacillus, has yet to be fully elucidated.
SUMMARY OF THE INVENTION
The capacity of the secretion machinery of a Gram-positive microorganism may become a limiting factor or bottleneck to protein secretion and the production of proteins in secreted form, in particular when the proteins are recombinantly introduced and overexpressed by the host cell. The present invention provides a means for alleviating that bottle neck.
The present invention is based, in part, upon the identification of the Bacillus secretion factor SecDF and upon the unexpected finding that, in contrast to SecD and SecF of
E.coli
, Bacillus SecDF is encoded by one nucleic acid sequence. The present invention is also based upon the unexpected finding that SecDF has sequence as well as structural similarity to secondary solute transporters.
The present invention is also based, in part, upon the finding that SecDF mutants of
B.subtilis
have a cold-sensitive phenotype for growth and further that the rate of processing of exo-enzymes, amylase and neutral protease, is decreased in SecDF mutants of
B.subtilis.
The present invention is also based, in part, upon the finding that
B.subtilis
SecDF, which has twelve putative transmembrane domains is required for efficient translocation of secretory pre-proteins under conditions of hyper-secretion.
The present invention provides isolated nucleic acid and amino acid sequences for B. subtilis SecD, SecF and SecDF. The amino acid sequence and nucleic acid sequence for
B. subtilis
SecDF is shown in
FIGS. 1A-1E
SEQ ID NOS: 1 and 2.
The present invention also provides improved methods for secreting proteins from gram-positive microorganisms. Accordingly, the present invention provides an improved method for secreting desired proteins in a gram-positive microorganism comprising the steps of obtaining a gram positive microorganism comprising nucleic acid encoding at least one Bacillus secretion factor selected from the group consisting of SecD, SecF and SecDF wherein said secretion factor is under the control of expression signals capable of expressing said secretion factor in a gram-positive microorganism said microorganism further comprising nucleic acid encoding said protein; and culturing said microorganism under conditions suitable for expression of said secretion factor and secretion of said protein. In one embodiment of the present invention, the protein is homologous or naturally occurring in the gram-positive microorganism. In another embodiment of the present invention, the protein is heterologous to the gram-positive microorganism.
The present invention provides expression vectors and host cells comprising at least one nucleic acid encoding a gram-positive secretion factor selected from the group consisting of SecD, SecF and SecDF. In one embodiment of the present invention, the host cell is genetically engineered to produce a desired protein, such as an enzyme, growth factor or hormone. In yet another embodiment of the present invention, the enzyme is selected from the group consisting of proteases, carbohydrases including amylases, cellulases, xylanases, reductases and lipases; isomerases such as racemases, epimerases, tautomerases, or mutases; transferases, kinases and phophatases acylases, amidases, esterases, oxidases.
In a further embodiment the expression of the secretion factor SecD, SecF and/or SecDF is coordinated with the expression of other components of the secretion machinery. Preferably other components of the secretion machinary, i.e., translocase, SecA, SecY, SecE and/or other secretion factors known to those of skill in the art are modulated in expression at an optimal ratio to SecD, SecF or SecDF. For example, it may be desired to overexpress multiple secretion factors in addition to SecDF for optimum enhancement of the secretion machinary.
The present invention also provides a method of identifying homologous non Bacillus subtilis secretion factors that comprises hybridizing part or all of secDF nucleic acid shown in
FIGS. 1A-1E
with nucleic acid derived from gram-positive microorganisms. In one embodiment, the nucleic acid is of genomic origin. In another embodiment, the nucleic acid is a cDNA. The present invention encompasses novel gram-positive secretion factors identified by this method.
REFERENCES:
patent: 5945278 (1999-08-01), Kontinen et al.
Epps Janet
Genencor International Inc.
Genencor Intl. Inc.
LeGuyader John L.
LandOfFree
Increasing production of proteins in gram-positive... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Increasing production of proteins in gram-positive..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Increasing production of proteins in gram-positive... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2559688