Computer graphics processing and selective visual display system – Computer graphics processing – Three-dimension
Reexamination Certificate
2001-12-10
2004-11-09
Zimmerman, Mark (Department: 2671)
Computer graphics processing and selective visual display system
Computer graphics processing
Three-dimension
C345S215000, C345S215000
Reexamination Certificate
active
06816159
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Technical Field
This invention relates to the field of image processing, and more particularly, to the incorporation of wireframe images in a computer software application.
2. Description of the Related Art
Images can be represented in many forms. Traditionally, images have been represented as photographs or pictures, photographic negatives, photographic slides, view-graphs images, paintings, and drawings. While these traditional forms of images remain quite popular, computer technology has revolutionized both the creation, representation and display of traditional images. In fact, computing devices have revolutionized the creation, manipulation and presentation of images.
Computer images typically are represented as a collection of dots referred to in the art as “pixels”. In conventional computer display systems, pixels can be arranged both in rows and columns specifying a display grid. Additionally, each of the pixels can be configured to display a specific color. While monochrome images include only two types of colored pixels, depending upon available computing power, pixels can be configured to display as many as 16.7 million colors.
The resolution of an image typically can be determined by the size and/or spacing of the pixels forming the image. Image resolution typically can be measured in pixels per inch (PPI) or dots per inch (DPI). When measuring image resolution, increasing values of PPI or DPI can translate to increasing and improving resolution of the image. Notably, high resolution images can provide greater subject detail and more realistic color transitions than can low resolution images.
The physical dimensions of an image often are referred to as image size. As will be apparent to one skilled in the art, the image size can be directly related to the image resolution. Since an image contains a fixed number pixels, increasing the image size will decrease the image resolution since the number of pixels remains the same but the image size has increased. Conversely, decreasing the image size will increase the image resolution since the number of pixels remains the same but the image size has decreased.
Three-dimensional (3D) modeling refers to the creation of a three-dimensional image. Generally, 3D modeling can include the conversion of a two-dimensional (2D) image into a 3D image that can have properties or characteristics such as depth, shadow and weight. A 3D image can also display reflective and refractive characteristics. For example, a 3D image of an object can cast shadows or reflect the surroundings in order to illustrate the ability of the object to reflect light.
In order to represent different types of images, various computer image formats have be created. These image formats can include bitmap images and vector graphic images. Bitmap or raster images are generally used for representing 2D images while vector graphic images are generally used for representing 3D images. A bitmap image is made up of individual pixels that appear to form a complete image. A vector graphics image utilizes geometric information or vectors that are used to define the appearance of the image. By using vectors to define the appearance of the image, the dimensions and physical appearance of the image or objects in the image, can be readily manipulated. For example, the surface of the object in image can be changed and mobility such as rotation, added to enhance the image.
A wireframe is the basic building block of a 3D object. The wireframe is the skeleton or underlying structure that binds the image or objects in an image together. A wireframe consists of a multiplicity of intersecting lines which are connected so that they create polygons which form the outline of the image.
FIG. 1
depicts an exemplary wireframe
100
that can be used to create a 3D ball. The 3D ball of
FIG. 1
includes a series of vertical lines in the shape of concave arcs, a series of vertical lines in the shape of convex arcs, a series of horizontal lines in the shape of concave arcs, and a series of horizontal lines in the shape of convex arcs. The concave and convex arcs are drawn in such a manner that they inter to form small polygons
110
that represent the surface of the ball.
The process of creating a wireframe to represent the basic skeleton that forms the shape of an image is called rendering. Rendering can also include the application of a surface along with its attendant characteristics and/or properties to the image. For example, properties such as color, depth, texture, reflective and motion properties can be added during the rendering process. The properties or characteristics of an image can be defined by attributes.
There are three well known rendering qualities that can be used to add properties to a wireframe. Good quality rendering uses the well-known Gouraud algorithm than can provide shading by determining the color and brightness of pixels located at each vertex
105
of the wireframe. The vertex is the point of intersection of the lines in a wireframe. Once the color and brightness of the pixels at each vertex is determined the color and brightness of the pixels located between the vertices can be interpolated.
By comparison, the Phong algorithm can provide the basis for improved rendering. In particular, the Phong algorithm can be used to provide shading by determining the color and brightness of all the pixels in the image. Better quality rendering provides a more realistic and smoother look than good quality rendering. However, better quality rendering requires more computing resources than better quality rendering.
Best quality rendering can be based upon an enhanced Phong algorithm that can add more realistic properties to an image. These properties can include bump maps, reflections, refractions, shadowing and depth. While the image quality is the superior to the other rendering methods, best quality rendering requires a significantly greater amount of computing power than good and better quality rendering.
Notably, enhanced image rendering can be used extensively in computer applications such as computer gaming. In particular, some computer gaming applications include digital “characters”. Examples of such computer gaming applications include mystery and adventure games and arcade-style action games. In both cases, images of fictional characters, unfamiliar to the end-user, are incorporated as the primary component of the computer gaming application. In consequence, conventional computer gaming applications lack a level of personalization which could otherwise be provided through the use of character images more familiar to the end-user.
SUMMARY OF THE INVENTION
The present invention can include a method and system for incorporating a personalized wireframe image within a computer software application. The method can include comparing an acquired image of a computer software application user with one or more pre-stored wireframe images in an image database. One of the pre-stored wireframe images can be selected which has image attributes similar to attributes of the acquired image. The selected wireframe image can be modified, the modification creating the personalized wireframe image of the user. Finally, the personalized wireframe image can be incorporated as a character within the computer software application. In particular, the computer software application can be a computer gaming application.
Notably, the modifying step can further include adding image attributes to the transformed image. The image attributes can include an age, gender, race, weight, height, body type, skin tone, hair style, facial expressions, ears, moustache type, moustache color, beard type, beard color, eye type, and eye color. Also, the image attributes can include a clothing type, clothing color, foot size, footwear size, footwear color, hat type, and a hat size attribute.
The method also can include acquiring the acquired image using an optical imaging device. Examples of optical imaging devices can include digital still cameras, digital video cameras and opt
Christopher & Weisberg P.A.
Santiago Enrique L
Zimmerman Mark
LandOfFree
Incorporating a personalized wireframe image in a computer... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Incorporating a personalized wireframe image in a computer..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Incorporating a personalized wireframe image in a computer... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3309245