Surgery – Body inserted urinary or colonic incontinent device or...
Reexamination Certificate
2001-11-20
2004-02-03
Winakur, Eric F. (Department: 3736)
Surgery
Body inserted urinary or colonic incontinent device or...
C604S019000
Reexamination Certificate
active
06685623
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates generally to medical devices methods, systems, and kits. More specifically, the present invention provides devices and methods for positioning electrodes to selectively heat and shrink tissues, particularly for the noninvasive treatment of urinary incontinence, hernias, cosmetic surgery, and the like.
Urinary incontinence arises in both women and men with varying degrees of severity, and from different causes. In men, the condition occurs almost exclusively as a result of prostatectomies which result in mechanical damage to the sphincter. In women, the condition typically arises after pregnancy where musculoskeletal damage has occurred as a result of inelastic stretching of the structures which support the genitourinary tract. Specifically, pregnancy can result in inelastic stretching of the pelvic floor, the external vaginal sphincter, and most often, the tissue structures which support the bladder and bladder neck region. In each of these cases, urinary leakage typically occurs when a patient's intra-abdominal pressure increases as a result of stress, e.g. coughing, sneezing, laughing, exercise, or the like.
Treatment of urinary incontinence can take a variety of forms. Most simply, the patient can wear absorptive devices or clothing, which is often sufficient for minor leakage events. Alternatively or additionally, patients may undertake exercises intended to strengthen the muscles in the pelvic region, or may attempt behavior modification intended to reduce the incidence of urinary leakage.
In cases where such noninterventional approaches are inadequate or unacceptable, the patient may undergo surgery to correct the problem. A variety of procedures have been developed to correct urinary incontinence in women. Several of these procedures are specifically intended to support the bladder neck region. For example, sutures, straps, or other artificial structures are often looped around the bladder neck and affixed to the pelvis, the endopelvic fascia, the ligaments which support the bladder, or the like. Other procedures involve surgical injections of bulking agents, inflatable balloons, or other elements to mechanically support the bladder neck.
It has recently been proposed to selectively deliver RF energy to gently heat fascia and other collagenated support tissues to treat incontinence. One problem associated with delivering RF energy to the targeted tissue is the alignment of the electrodes with the target tissue. Direct heating of target tissue is often complicated since the target tissue is offset laterally and separated from the urethra by triangular shaped fascia sheets supporting the urethra. These urethra-supporting fascia sheets often contain nerve bundles and other structures that would not benefit from heating. In fact, injury to these nerve bundles may even promote incontinence, instead of providing relief from incontinence.
For these reasons, it would be desirable to provide improved devices, methods, systems, and kits for providing improved alignment devices and methods that would improve the positioning of heating electrodes adjacent the target tissue and away from the surrounding, sensitive nerve bundles.
BRIEF SUMMARY OF THE INVENTION
The present invention provides devices, methods, systems, and kits for positioning a treatment surface, such as electrodes, adjacent a target tissue, particularly for treating urinary incontinence.
The probes and guides of the present invention can accurately position a treatment surface, such as an electrode array, adjacent a target tissue. The present invention utilizes the human anatomy to help guide the treatment surface into contact with the target tissue. Generally, the probe can be inserted in a first body orifice and the guide can be inserted in a second body orifice to guide and position the treatment surface adjacent the target tissue.
In exemplary embodiments, the guide can be inserted into the urethra to help position the treatment surface adjacent the target tissue in the vagina. As illustrated in
FIG. 8
, the urethra U is supported by triangular shaped fascia sheets FS is that have nerve bundles. Delivery of electrical energy into the fascia sheets FS is undesirable. The electrical energy is preferably delivered to the endopelvic fascia EF that is spaced laterally to both sides of the urethra. To offset the probe body away from the fascia sheets and urethra, a longitudinal axis of the guide can be aligned in an angled arrangement with a longitudinal axis of the probe body. The angled offset moves the probe body laterally (left or right) away from the urethral tissue and fascia sheets and adjacent the target endopelvic fascia EF for treatment.
The probes of the present invention generally includes a probe body comprising a treatment surface. A urethral guide can be coupled to the probe body in an offset alignment relative to the probe body. The urethral guide is positionable in the urethra so as to align the treatment surface with a target tissue, and away from non-target tissue.
Optionally, the urethral guide will be removably attached to the probe body. The removable attachment allows the probe body and urethral guide to be independently inserted into the body. After both have been inserted, the two can be attached to align the treatment assembly with the target tissue. Optionally, the probes of the present invention may have a coupling structure on each side of the probe body to provide proper alignment of the treatment surface with target tissue both to the left and right of the urethra.
Exemplary guides of the present invention can also be configured to bias the electrodes into the target tissue. Such biasing can improve the efficiency of electrical energy delivery and can reduce the amount of current that arcs to the surrounding non-target tissue, if the electrodes are not in proper contact with the target tissue.
Unlike conventional intrauterine catheters, both the probe body and guide means will typically be rigid and rigidly connected to each other. The rigid configuration of the probes of the present invention allows the physician to maintain the position of the treatment surface relative to the target tissue.
The guides of the present invention can also optionally include an expansible member adjacent its distal end. The urethral guide can be moved through the urethra and into the patient's bladder. Once in the bladder, the expansible member can be expanded so as to prevent proximal movement of the urethral guide and probe body.
The methods of the present invention generally comprise guiding a treatment surface, such as an electrode to a target tissue with an offset guide. Once the treatment surface is positioned against the target tissue, the target tissue can be treated. Typically, treatments comprise delivering an electrical energy to heat and shrink or stiffen the target tissue.
One method of the present invention comprises inserting a treatment probe having a treatment surface, such as an electrode array, into a first body orifice (e.g., vagina). A guide is placed into a second body orifice (e.g., urethra). The probe can be coupled to the guide either before insertion of the guide and probe body into the body orifices, or after insertion of the guide and probe body into the body orifices, to position the treatment surface in the proper alignment with a target tissue in the vagina. In order to accurately position the electrode array away from the non-target urethra, the treatment probe can have a guide that offsets the treatment surface laterally away from the urethral tissue. Typically the angle of offset between the probe and the shaft will be between approximately 5° degrees and 30° degrees, and preferably approximately 15° degrees.
The present invention further provides kits for treating incontinence. The kits of the present invention typically include any of the probes and guides as described above. The kits will generally include a package for holding the probe, guide, and instructions for use which describe any of the exempl
Dietz Timothy G.
House F. Allen
Levy, Jr. Stanley
Presthus James B.
Trebotich Steven H.
SURx, Inc.
Townsend and Townsend / and Crew LLP
Veniaminov Nikita R
Winakur Eric F.
LandOfFree
Incontinence treatment with urethral guide does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Incontinence treatment with urethral guide, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Incontinence treatment with urethral guide will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3326826