Incident-aware vehicular sensors for intelligent...

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Traffic analysis or control of surface vehicle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S118000, C701S200000, C073S17800T

Reexamination Certificate

active

06804602

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to telematics sensor systems, and, more specifically, to the collection and transfer of dynamic traffic and environmental data from mobile on-board collection systems to the Intelligent Transportation System (ITS) network. Most specifically, the present invention relates to collection of traffic incidents by mobile units, and processing of traffic incidents by the ITS network.
Sensor and locator systems within mobile devices, in particular within vehicles, are becoming commonplace, but the complete range of their utility has yet to be realized. Vehicular telematics systems usually include vehicle location systems that are based on Global Positioning System (GPS) technology and are thus capable of providing data to traffic analysis systems. Traffic analysis systems are also becoming widespread. These systems usually base their traffic predictions on traffic statistics, historical data, and data collected from specific sources such as specially-equipped vehicles or fixed-position sensors. Among these traffic analysis systems is an ITS network, which is an implementation of the United States National ITS Architecture (USITSA). The USITSA is a framework of physical elements on which ITS implementations, standards, and evaluation can be built. Current ITS implementations assist in traffic monitoring and emergency vehicle control by collecting and processing highway traffic data (vehicle speed and volume of traffic).
U.S. Pat. No. 5,164,904 discloses a traffic analysis system in which disparate sources of traffic information, including data from “sample vehicles”, are fused. There is no connection between the ITS network and the '904 system. There is no general collection of data from any mobile source.
The ADVANCE system of the Illinois Department of Transportation (described in U.S. Pat. No. 5,933,100) includes the collection by vehicles of traffic-related data about the condition of recently-traversed streets. These data are transmitted to a base station/traffic information center through a radio frequency communications medium. The traffic information center combines data from all its sources to create a dynamic picture of the traffic situation. The ADVANCE system requires special equipment in the vehicle, beyond telematics equipment that is now becoming standard, to implement the system. In particular, the radio communications equipment requires specific frequencies that may interfere with other radio communications. This system is not related to the ITS network.
A Finnish transportation system, “Keiju”, uses road maintenance vehicles to collect and distribute information on road maintenance in near real-time. The system automatically registers information on, for example, the number of times a plow is used, the distances traveled, materials used, and routes selected. This information is transferred to road weather service centers to describe changes in weather conditions on individual stretches of road. This system is confined to specially-equipped road maintenance vehicles.
U.S. Pat. No. 5,933,100 describes a system for personalized traffic reports and route planning as a function of street segment travel time data collected by specially-equipped vehicles. The travel time data are computed by special software and GPS data, and are transmitted through a cellular communications medium to a base station/central database and then back out to subscribers. The focus of this system is travel time. The system does not interface with the ITS network.
U.S. Pat. No. 6,067,031 discloses Location Detection (LD) through the GPS system that is used to evaluate the proximity of vehicles to each other data, thus providing a picture of traffic congestion for a commuting subscriber. This system is confined to proximity detection and does not provide a general picture of the road situation including, for example, the condition of the surface of the roadway.
Existing ITS implementations require pressure-sensitive sensors physically imbedded in the road, motion detecting sensors installed by the side of the road, and manual data entry. ITS sensors require regular maintenance. Furthermore, these sensors are prone to damage by weather, accidents, and construction work. No traditional ITS implementations allow for incident-awareness at the sensor level. Any knowledge that, for example, a traffic jam was caused by an accident must be inserted into the ITS network manually. Finally, it is expensive to outfit a highway with ITS sensors because of construction costs and the need to obtain right-of-way for the sensors and a connecting network.
A system is needed that would dynamically collect real-time ITS data from a great number of passenger and emergency vehicles, including traffic incident data. These data could replace or enhance data of current ITS implementations that are either static or collected in real-time from stationary sensors. The need for an in-vehicle computer and a network link from that computer to a wide area or other network has already justified its cost, and to make such systems work within an ITS implementation, very little additional hardware is needed.
BRIEF SUMMARY OF THE INVENTION
The problems set forth above as well as further and other problems are solved by the present invention. These solutions and other advantages are achieved by the illustrative embodiment of the invention described hereinbelow.
The system and method of the present invention include enhancements to existing ITS implementations as follows: (1) improvements to existing in-vehicle data collection systems to accommodate collection and processing of ITS data and traffic incident data, (2) improvements to the communications system between in-vehicle collection systems and ITS implementations, including a communications protocol element to insure vehicle anonymity, and (3) improvements to existing ITS implementations to receive real-time vehicle data and integrate those data with currently-collected data to create a report of the current traffic situation.
Unlike current ITS implementations, the system of the present invention does not require an infrastructure of sensors to be installed on the side of or under the road. Instead, vehicles become real-time data collectors and expand the coverage and predictive capability of the enhanced ITS implementation. The system and method of the present invention provide for enhancing existing integrated in-vehicle computer systems to include ITS data sensors. In-vehicle computer systems that include wireless communication ability and GPS receivers that are integrated with the vehicle's onboard data, diagnostic, and control bus can be upgraded by means of the present invention to transmit ITS data and traffic incident data. ITS data can include vehicle velocity (received from the vehicle's data, diagnostic, and control bus), vehicle location data (received from the GPS), proximity data (received from light or infrared sensors), and weather conditions data (received from on-board sensors). Traffic incident data can include, but are not limited to, the orientation of the vehicle, whether or not airbags are deployed, and the change in speed of the vehicle. The ITS implementation of the present invention processes vehicle data and status based on location before feeding it to the current ITS implementation processing algorithms that process real-time data collected from known locations.
The system and method of the present invention also provide for enhancing ITS implementation functionality to accept and process enhanced vehicular real-time sensor and incident data including data and status messages from emergency and other vehicular sensors. Emergency and construction vehicles contain specialized “sensors” that inject situational information into the system. For example, on-board sensors can allow the enhanced ITS implementation to detect gridlock, traffic jams, and accidents. Enhanced emergency service and rescue vehicle on-board sensors can provide knowledge of specialized incidents. For ex

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Incident-aware vehicular sensors for intelligent... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Incident-aware vehicular sensors for intelligent..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Incident-aware vehicular sensors for intelligent... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3284121

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.