Multicellular living organisms and unmodified parts thereof and – Plant – seedling – plant seed – or plant part – per se – Higher plant – seedling – plant seed – or plant part
Reexamination Certificate
2000-05-15
2002-07-16
Fox, David T. (Department: 1638)
Multicellular living organisms and unmodified parts thereof and
Plant, seedling, plant seed, or plant part, per se
Higher plant, seedling, plant seed, or plant part
C800S260000, C800S278000, C435S420000
Reexamination Certificate
active
06420631
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to a new and distinctive cantaloupe inbred line, designated GdM3. There are numerous steps in the development of any novel, desirable plant germplasm. Plant breeding begins with the analysis and definition of problems and weaknesses of the current germplasm, the establishment of program goals, and the definition of specific breeding objectives. The next step is selection of germplasm that possess the traits to meet the program goals. The goal is to combine in a single variety or hybrid an improved combination of desirable traits from the parental germplasm. These important traits may include higher yield, fruit quality, resistance to diseases and insects, better stalks and roots, tolerance to drought and heat, and better agronomic quality.
Practically speaking, all cultivated forms of cantaloupe belong to the highly polymorphic species
Cucumis melo
L. that is grown for its sweet edible fruit. The term cantaloupe, as used herein, refers to the American usage of the term which is used to describe the netted melons commonly referred to as cantaloupe or muskmelon in U.S. commerce. As a crop, cantaloupes are grown commercially wherever environmental conditions permit the production of an economically viable yield. They are produced on non-climbing vines that are prostrate on the soil. On healthy plants there is a canopy of large, soft, hairy leaves, generally heart shaped and somewhat lobed. Fruits may be orange fleshed or green fleshed. The fruit surface is generally netted and roughened and in some varieties sutured. Fruit shape is generally round to oval and ranges in size from five to eight inches long and about equal in diameter. In the United States, the principal fresh market cantaloupe growing regions are California, Arizona and Texas which produce approximately 96,000 acres out of a total annual acreage of more than 113,000 acres (USDA, 1998). Fresh cantaloupes are available in the United States year-round although the greatest supply is from June through October. Fresh cantaloupes are consumed in many forms. They are eaten sliced or diced and used as an ingredient in many prepared foods.
Cucumis melo
is a member of the family Cucurbitaceae. The Cucurbitaceae is a family of about 90 genera and 700 to 760 species, mostly of the tropics. The family includes pumpkins, squashes, gourds, watermelon, loofah and several weeds. The genus Cucumis, to which the cantaloupe, cucumbers, and several melons belong, includes about 70 species.
Cucumis melo
includes a wide range of cultivated plants. Although crosses outside the species are sterile, intraspecific crosses are generally fertile, resulting in a confusing range of variation. The more common cultivated plants fall into four main groups. First are the true cantaloupes of Europe. These have thick, scaly, rough, often deeply grooved, but not netted rinds. Second are the muskmelons, mostly grown in the United States, where they are incorrectly called cantaloupes. These have finely netted rinds with shallow ribs. Third are the casaba or winter melons with large fruits. These have smooth, often yellow rinds. The honeydew melons are in this third group. Fourth are a group of elongated melons of India, China and Japan which are grown as vegetables. Other classification schemes and peculiar cultivars could be presented.
Cantaloupe is a simple diploid species with twelve pairs of highly differentiated chromosomes. Large field spaces are required for cantaloupe and the need for labor intensive hand pollination for selfing as well as cross pollination has resulted in a lag in the knowledge of cantaloupe genetics relative to such crops as tomato. Cantaloupe flowers open after sunrise; the exact time depends on environmental conditions such as sunlight, temperature and humidity. The flower closes permanently in the afternoon of the same day. Almost all pollen is collected and transferred before noon. Typically flowers are staminate although some are also hermaphroditic. Although hermaphroditic flowers are self-fertile, they are incapable of performing self-pollination. Insects are required for pollination. The primary pollinators are bees, particularly honey bees.
Choice of breeding or selection methods depends on the mode of plant reproduction, the heritability of the trait(s) being improved, and the type of cultivar used commercially (e.g., F
1
hybrid cultivar, pureline cultivar, etc.). For highly heritable traits, a choice of superior individual plants evaluated at a single location will be effective, whereas for traits with low heritability, selection should be based on mean values obtained from replicated evaluations of families of related plants. Popular selection methods commonly include pedigree selection, modified pedigree selection, mass selection, and recurrent selection.
The complexity of inheritance influences choice of the breeding method. Backcross breeding is used to transfer one or a few favorable genes for a highly heritable trait into a desirable cultivar. This approach has been used extensively for breeding disease-resistant cultivars. Various recurrent selection techniques are used to improve quantitatively inherited traits controlled by numerous genes. The use of recurrent selection in self-pollinating crops depends on the ease of pollination, the frequency of successful hybrids from each pollination, and the number of hybrid offspring from each successful cross.
Each breeding program should include a periodic, objective evaluation of the efficiency of the breeding procedure. Evaluation criteria vary depending on the goal and objectives, but should include gain from selection per year based on comparisons to an appropriate standard, overall value of the advanced breeding lines, and number of successful cultivars produced per unit of input (e.g., per year, per dollar expended, etc.).
Promising advanced breeding lines are thoroughly tested and compared to appropriate standards in environments representative of the commercial target area(s) for three years at least. The best lines are candidates for new commercial cultivars; those still deficient in a few traits are used as parents to produce new populations for further selection.
These processes, which lead to the final step of marketing and distribution, usually take from eight to 12 years from the time the first cross is made. Therefore, development of new cultivars is a time-consuming process that requires precise forward planning, efficient use of resources, and a minimum of changes in direction.
A most difficult task is the identification of individuals that are genetically superior, because for most traits the true genotypic value is masked by other confounding plant traits or environmental factors. One method of identifying a superior plant is to observe its performance relative to other experimental plants and to a widely grown standard cultivar. If a single observation is inconclusive, replicated observations provide a better estimate of its genetic worth.
The goal of plant breeding is to develop new, unique and superior cantaloupe inbred lines and hybrids. The breeder initially selects and crosses two or more parental lines, followed by repeated selfing and selection, producing many new genetic combinations. The breeder can theoretically generate billions of different genetic combinations via crossing, selfing and mutations. The breeder has no direct control at the cellular level. Therefore, two breeders will never develop the same line, or even very similar lines, having the same cantaloupe traits.
Each year, the plant breeder selects the germplasm to advance to the next generation. This germplasm is grown under unique and different geographical, climatic and soil conditions, and further selections are then made, during and at the end of the growing season. The inbred lines which are developed are unpredictable. This unpredictability is because the breeder's selection occurs in unique environments, with no control at the DNA level (using conventional breeding procedures), and with millions of
Fox David T.
Harris Moran Seed Company
Moonan Francis P.
Rothwell Figg Ernst & Manbeck
LandOfFree
Inbred cantaloupe GdM3 does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Inbred cantaloupe GdM3, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Inbred cantaloupe GdM3 will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2882651