In vitro method for disassembly/reassembly of papillomavirus...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving virus or bacteriophage

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S235100, C435S236000, C435S238000, C435S239000

Reexamination Certificate

active

06261765

ABSTRACT:

FIELD OF THE INVENTION
The present invention provides a highly efficient means of disassembly of papillomavirus virus-like particles (VLPs) into capsomeres and/or smaller subunits, and reassembly into VLPs. These reassembled VLP-containing compositions produced by the invention express conformational, neutralizing epitopes and have high homogeneity and therefore comprise effective diagnostic and prophylactic agents for diagnosis or prevention of papillomavirus infection. Also, the present invention relates to the use of such VLPs for encapsulation of desired moieties, e.g., diagnostic or therapeutic agents, and the use thereof as “pseudovirions” for evaluating the efficacy of putative vaccines or therapeutics.
BACKGROUND OF THE INVENTION
Papillomaviruses infect a wide variety of different species of animals including humans. Infection is typically characterized by the induction of benign epithelial and fibro-epithelial tumors, or warts at the site of infection. Each species of vertebrate is infected by a species-specific set of papillomavirus, itself comprising several different papillomavirus types. For example, more than sixty different human papillomavirus (HPV) genotypes have been isolated. Papillomaviruses are highly species-specific infective agents. For example, canine and rabbit papillomaviruses cannot induce papillomas in heterologous species such as humans. Neutralizing immunity to infection against one papillomavirus type generally does not confer immunity against another type, even when the types infect a homologous species.
In humans, papillomaviruses cause genital warts, a prevalent sexually-transmitted disease. HPV types 6 and 11 are most commonly associated with benign genital warts condylomata acuminata. Genital warts are very common, and subclinical or inapparent HPV infection is even more common than clinical infection. While most HPV-induced lesions are benign, lesions arising from certain papillomavirus types, e.g., HPV-16 and HPV-18, can undergo malignant progression. Moreover, infection by one of the malignancy-associated papillomavirus types is considered to be a significant risk factor in the development of cervical cancer, the second most common cancer in women worldwide. Of the HPV genotypes involved in cervical cancer, HPV-16 is the most common, being found in about 50% of cervical cancers.
In view of the significant health risks posed by papillomavirus infection generally, and human papillomavirus infection in particular, various groups have reported the development of recombinant papillomavirus antigens and their use as diagnostic agents and as prophylactic vaccines. In general, such research has been focused toward producing prophylactic vaccines containing the major capsid protein (L1) alone or in combination with the minor capsid protein (L2). For example, Ghim et al,
Virology,
190:548-552 (1992), reported the expression of HPV-1 L1 protein, using a vaccinia expression in Cos cells, which displayed conformational epitopes and the use thereof as a vaccine or for serological typing or detection. This work is also the basis of a patent application, U.S. Ser. No. 07/903,109, filed Jun. 25, 1992 (abandoned in favor of U.S. Ser. No. 08/216,506, filed on Mar. 22, 1994), which has been licensed by the assignee of this application. Also, Suzich et al,
Proc. Natl. Acad. Sci., U.S.A.,
92:11553-11557 (1995), report that the immunization of canines with a recombinant canine oral papillomavirus (COPV) expressed in a baculovirus/insect cell system completely prevented the development of viral mucosal papillomas. These results are important given the significant similarities between many HPVs and COPV. For example, COPV, similar to HPVs associated with anogenital and genital cancer, infects and induces lesions at a mucosal site. Also, the L1 sequences of COPV shares structural similarities to HPV L1 sequences. Given these similarities, the COPV/beagle model is useful for investigation of L1 protein-containing vaccines, e.g., investigation of the protective immune response, protection from natural infection and optimization of vaccination protocols. (Id.)
Also, a research group from the University of Rochester reported the production of human papillomavirus major capsid protein (L1) and virus-like particles using a baculovirus/insect cell expression system (Rose et al, University of Rochester, WO 94/20137, published on Sep. 15, 1994). In particular, they reported the expression of the L1 major capsid protein of HPV-6 and HPV-11 and the production of HPV-6, HPV-11, HPV-16 and HPV-18 virus-like particles.
Further, a University of Queensland research group also purportedly disclosed the recombinant manufacture of papillomavirus L1 and/or L2 proteins and virus-like particles as well as their potential use as vaccines (Frazer et al, WO 93/02189, published Feb. 4, 1993).
Still further, a United States government research group reported recombinant papillomavirus capsid proteins purportedly capable of self-assembly into capsomere structures and viral capsids that comprise conformational antigenic epitopes (U.S. Pat. No. 5,437,951, Lowy et al, issued Aug. 1, 1995). The claims of this patent are directed to a specific HPV-16 DNA sequence which encodes an L1 protein capable of self-assembly and use thereof to express recombinant HPV-16 capsids containing said HPV-16 L1 protein.
With respect to HPV capsid protein containing vaccines, it is widely accepted by those skilled in the art that a necessary prerequisite of an efficacious HPV L1 major capsid protein-based vaccine is that the L1 protein present conformational epitopes expressed by native human papillomavirus major capsid proteins (see, e.g., Hines et al,
Gynecologic Oncology,
53:13-20 (1994); Suzich et al,
Proc. Natl. Acad. Sci., U.S.A.,
92:11553-11557 (1995)).
Both non-particle and particle recombinant HPV L1 proteins that present native conformational HPV L1 epitopes have been reported in the literature. It is known that L1 is stable in several oligomeric configurations, e.g., (i) capsomeres which comprise pentamers of the L1 protein and (ii) capsids which are constituted of seventy-two capsomeres in a T=7 icosahedron structure. Also, it is known that the L1 protein, when expressed in eukaryotic cells by itself, or in combination with L2, is capable of efficient self-assembly into capsid-like structures generally referred to as virus-like particles (VLPs).
VLPs have been reported to be morphologically and antigenically similar to authentic virions. Moreover, immunization with VLPs has been reported to elicit the production of virus-neutralizing antibodies. More specifically, results with a variety of animal papillomaviruses (canine oral papillomavirus and bovine papillomavirus-4) have suggested that immunization with VLPs results in protection against subsequent papillomavirus infection. Consequently, VLPs composed of HPV L1 proteins have been proposed as vaccines for preventing diseases associated with human papillomavirus infections.
For example, it has been reported that the L1 protein can assemble into VLPs when expressed using recombinant baculovirus and vaccinia virus vectors and in recombinant yeast (Hagensee et al,
J. Virol.,
68:4503-4505 (1994); Hofmann et al,
Virology,
209:506-518 (1995); Kirnbauer et al,
Proc. Natl. Acad. Sci. USA,
89:12180-12184 (1992); Kirnbauer et al,
J. Virol.,
67:6929-6936 (1993); Rose et al,
J. Virol.,
67:1936-1944 (1993); Sasagawa et al,
Virology,
206:126-135 (1995); Suzich et al,
Proc. Natl. Acad. Sci. USA,
92:11553-11557 (1995); Volpers et al,
Virology,
200:504-512 (1994); Zhou et al,
J. Virol.,
68:619-625 (1994)).
Most previous recombinant L1 preparations isolated from eukaryotic cells have resulted in a variable population of VLPs approaching 55 nm in diameter, which are similar in appearance to intact virions. However, VLP assembly is somewhat sensitive to cell type. For example, L1 expressed in
Escherichia coli
is expressed largely in the form of capsomeres or smaller, with few or no capsids apparent either in the cell or upon purificati

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

In vitro method for disassembly/reassembly of papillomavirus... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with In vitro method for disassembly/reassembly of papillomavirus..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and In vitro method for disassembly/reassembly of papillomavirus... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2551101

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.