Wells – Processes – Placing or shifting well part
Reexamination Certificate
1999-05-14
2002-04-23
Bagnell, David (Department: 3672)
Wells
Processes
Placing or shifting well part
C166S050000, C166S191000, C166S241100
Reexamination Certificate
active
06374918
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is directed to wellbore operations, in-tubing sidetracking operations, wellbore milling procedures, and apparatuses and systems useful in such operations and procedures.
2. Description of Related Art
Many completed wells have one or more strings of tubing extending within casing from the surface (or from a tubing hanger) down within the well to a location above completion apparatus in a completion zone. Typically the interface at the lower end of the tubing string and the interior of well casing is sealed, e.g. with a packer or other sealing device. It is also common for a travel joint between the packer and tubing end to accommodate relative movement between the two.
Often it is desirable to produce the well from alternate zones, including, but not limited to, a location above the packer at the end of the tubing string. In several prior art methods, the tubing string is removed to accomplish a sidetracking operation above the level of the original completion zone. Once the tubing is removed a new annulus or primary barrier is installed above a new tubing-casing exit from which a new lateral wellbore extends.
In various prior art methods, new exits (exit openings through tubing, cement and casing) have been provided, an new lateral wellbores drilled therefrom, with the exits positioned below an existing annulus barrier. Such exits and lateral wellbores have been established using coiled tubing without requiring the use of a rig above the wellbore.
Often it is desirable to move up above a current completion zone due to, e.g., offset distance of a new drainage target which requires a well path beginning at a higher point in the wellbore due to maximum build angles versus the distance a well can be drilled due to friction of pipes pushed around curves in the wellbore.
There has long been a need for an efficient and effective method for re-completing a well in tubing above a previous completion location. There has long been a need for a method that efficiently and effectively provides a suitable opening or window through tubing and casing for drilling a sidetracked lateral wellbore at a desired re-completion location. There has long been a need, recognized by the present inventors, for stabilizing tubing at the desired re-completion location. There has long been a need for such a system and method wherein a new primary barrier is provided without the need to remove an entire tubing string.
SUMMARY OF THE PRESENT INVENTION
The present invention, in certain aspects, provides a method for wellbore operations in an earth wellbore with tubing within casing in an earth wellbore, the wellbore extending down into earth from an earth surface, the tubing comprising a tubing string with a lower end and extending down within the casing with the lower end at a point above a lower end of the casing, a tubing-casing annulus between the tubing and the casing sealed by a first sealing apparatus, the method including sealing the lower end of the tubing string with a sealing device to prevent fluid flow therethrough, and sealing the tubing-casing annulus with a second sealing apparatus above and spaced apart from the first sealing apparatus.
The present invention, in certain embodiments, discloses a through-tubing in-tubing system for providing a tubing/casing exit above a first completion zone in a main wellbore for drilling a new lateral wellbore from the main wellbore. In one embodiment in which a tubing-casing annulus is initially sealed off at a lower end for production below the tubing, another seal is provided within the tubing-casing annulus above and spaced apart from the lower seal. Then the tubing is perforated between the two seal areas, preferably without perforating the casing. In one aspect a travel joint, (including, but not limited to, a commercially available ELTSR receptacle from Baker Oil Tools) part of which encompasses the lower end of the tubing, is also perforated. Cement, resin or other suitable hardenable material is then pumped from the surface, down the interior of the tubing string, out through the perforations, and up into the annulus between the tubing's exterior and the casing's interior to such a level to stabilize a portion of the tubing for making one or more exit openings in the tubing and casing below that cement level.
The exit opening(s) are made with any suitable known apparatuses, equipment and methods, including, but not limited to, with a mill or mills, jet cutter(s), and explosives. In certain aspects, a diverter, mill guide, and/or whipstock is positioned and secured for directing a mill or mills against the tubing and/or casing. A suitable mill or mills are then used to make the exit opening(s) or window(s). In one aspect the mill or mills are run on a string rotatable from the surface. In another aspect, a coiled tubing string is used that includes a downhole motor for rotating a mill. Such a coiled tubing string may be used within the tubing that does not necessitate removal of the tubing string from the well or removal of a wellhead at the surface. The emplacement of the seal apparatus and perforating of the tubing can also be done without removal of the wellhead.
Once the exit opening(s) are provided, a lateral wellbore may be drilled out (“sidetracked”) from the casing exit as desired. The lateral wellbore may then be lined or cased as is well known in the art.
In another embodiment, following sealing of the tubing, cementing, and sidetracking, a jet cutter is lowered into the tubing to sever the tubing above the sealing apparatus. The entire tubing string is then raised at the surface and re-hung to provide a desired gap, e.g. of 30 feet in length, at a desired location down in the wellbore for installing a new upper primary barrier.
In yet another embodiment, following sealing of the tubing, cementing, and sidetracking as described above, an explosive device according to the present invention is run into the tubing and positioned adjacent the area at which a tubing gap is desired. One or more selectively activatable holding subs, e.g. but not limited to, the “button subs” or “hold downs” disclosed in U.S. Pat. No. 5,785,120, are activated by pumping fluid under pressure down the tubing string to secure the explosive device in position. Alternatively mechanical anchors or the like may be used. A fluid pressure-activated firing head of the explosive device is activated by pumping fluid under pressure down the tubing string. The firing head simultaneously fires three separate charges: 1. a top charge that severs the tubing at a top level; 2. a bottom charge that severs the tubing at a bottom level; and 3. a slotting charge that fires to produce a series of longitudinal slots and corresponding fingers in and around the severed tubing. The explosive device is connected at the end of a tubing or coiled tubing string which is then lowered, pushing the housing of the explosive device down into the remaining tubing. The button sub(s) hold the severed tubing and, as the severed tubing is lowered, the fingers go down between the tubing's exterior and the casing's interior, creating an open axial gap in the tubing. The button sub(s) are then released and the housing of the explosive device is retrieved from the tubing. A sealing apparatus, e.g. an inflatable packer or, a mechanical packer, either of which may be a through-tubing packer or, is then run into the tubing on a tubing string or on coiled tubing and positioned at the gap in the tubing. Activating the packer seals off the tubing/casing annulus. The string is then released from the packer and retrieved from the wellbore.
In another embodiment a system with a mill and a downhole motor on coiled tubing is positioned with a mill adjacent the desired location for removal of a section of the tubing. The system is secured in place within the tubing with any suitable securement apparatus, including, but not limited to, one or more of the button subs discussed above. The system also includes a movement or stroking
Bingham Brian
Dawson Alex
Duguid David
Haugen David M.
Horst Todd
Bagnell David
Gay Jennifer H.
Moser, Patterson & Sheridan L.L.P.
Weatherford / Lamb, Inc.
LandOfFree
In-tubing wellbore sidetracking operations does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with In-tubing wellbore sidetracking operations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and In-tubing wellbore sidetracking operations will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2920517