Wells – Processes – With indicating – testing – measuring or locating
Reexamination Certificate
2001-04-24
2004-04-20
Suchfield, George (Department: 3672)
Wells
Processes
With indicating, testing, measuring or locating
C166S050000, C166S252100, C166S257000, C166S258000, C166S267000, C166S272700, C166S302000
Reexamination Certificate
active
06722431
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to methods and systems for production of hydrocarbons, hydrogen, and/or other products from various hydrocarbon containing formations. Certain embodiments relate to in situ conversion of hydrocarbons to produce hydrocarbons, hydrogen, and/or novel product streams from underground hydrocarbon containing formations.
2. Description of Related Art
Hydrocarbons obtained from subterranean (e.g., sedimentary) formations are often used as energy resources, as feedstocks, and as consumer products. Concerns over depletion of available hydrocarbon resources have led to development of processes for more efficient recovery, processing and/or use of available hydrocarbon resources. In situ processes may be used to remove hydrocarbon materials from subterranean formations. Chemical and/or physical properties of hydrocarbon material within a subterranean formation may need to be changed to allow hydrocarbon material to be more easily removed from the subterranean formation. The chemical and physical changes may include in situ reactions that produce removable fluids, composition changes, solubility changes, phase changes, and/or viscosity changes of the hydrocarbon material within the formation. A fluid may be, but is not limited to, a gas, a liquid, an emulsion, a slurry and/or a stream of solid particles that has flow characteristics similar to liquid flow.
Examples of in situ processes utilizing downhole heaters are illustrated in U.S. Pat. Nos. 2,634,961 to Ljungstrom, 2,732,195 to Ljungstrom, 2,780,450 to Ljungstrom, 2,789,805 to Ljungstrom, 2,923,535 issued to Ljungstrom, and 4,886,118 to Van Meurs et al., each of which is incorporated by reference as if fully set forth herein.
Application of heat to oil shale formations is described in U.S. Pat. Nos. 2,923,535 to Ljungstrom and 4,886,118 to Van Meurs et al., both of which are incorporated by reference as if fully set forth herein. Heat may be applied to the oil shale formation to pyrolyze kerogen within the oil shale formation. The heat may also fracture the formation to increase permeability of the formation. The increased permeability may allow formation fluid to travel to a production well where the fluid is removed from the oil shale formation. In some processes disclosed by Ljungstrom, for example, an oxygen containing gaseous medium is introduced to a permeable stratum, preferably while still hot from a preheating step, to initiate combustion.
A heat source may be used to heat a subterranean formation. Electrical heaters may be used to heat the subterranean formation by radiation and/or conduction. An electrical heater may resistively heat an element. U.S. Pat. No. 2,548,360 to Germain, which is incorporated by reference as if fully set forth herein, describes an electrical heating element placed within a viscous oil within a wellbore. The heater element heats and thins the oil to allow the oil to be pumped from the wellbore. U.S. Pat. No. 4,716,960 to Eastlund et al., which is incorporated by reference as if fully set forth herein, describes electrically heating tubing of a petroleum well by passing a relatively low voltage current through the tubing to prevent formation of solids. U.S. Pat. No. 5,065,818 to Van Egmond, which is incorporated by reference as if fully set forth herein, describes an electrical heating element that is cemented into a well borehole without a casing surrounding the heating element.
U.S. Pat. No. 6,023,554 to Vinegar et al., which is incorporated by reference as if fully set forth herein, describes an electrical heating element that is positioned within a casing. The heating element generates radiant energy that heats the casing. A granular solid fill material may be placed between the casing and the formation. The casing may conductively heat the fill material, which in turn conductively heats the formation.
U.S. Pat. No. 4,570,715 to Van Meurs et al., which is incorporated by reference as if fully set forth herein, describes an electrical heating element. The heating element has an electrically conductive core, a surrounding layer of insulating material, and a surrounding metallic sheath. The conductive core may have a relatively low resistance at high temperatures. The insulating material may have electrical resistance, compressive strength and heat conductivity properties that are relatively high at high temperatures. The insulating layer may inhibit arcing from the core to the metallic sheath. The metallic sheath may have tensile strength and creep resistance properties that are relatively high at high temperatures.
U.S. Pat. No. 5,060,287 to Van Egmond, which is incorporated by reference as if fully set forth herein, describes an electrical heating element having a copper-nickel alloy core.
Combustion of a fuel may be used to heat a formation. Combusting a fuel to heat a formation may be more economical than using electricity to heat a formation. Several different types of heaters may use fuel combustion as a heat source that heats a formation. The combustion may take place in the formation, in a well and/or near the surface. Combustion in the formation may be a fireflood. An oxidizer may be pumped into the formation. The oxidizer may be ignited to advance a fire front towards a production well. Oxidizer pumped into the formation may flow through the formation along fracture lines in the formation. Ignition of the oxidizer may not result in the fire front flowing uniformly through the formation.
A flameless combustor may be used to combust a fuel within a well. U.S. Pat. Nos. 5,255,742 to Mikus, 5,404,952 to Vinegar et al., 5,862,858 to Wellington et al., and 5,899,269 to Wellington et al., which are incorporated by reference as if fully set forth herein, describe flameless combustors. Flameless combustion may be accomplished by preheating a fuel and combustion air to a temperature above an auto-ignition temperature of the mixture. The fuel and combustion air may be mixed in a heating zone to combust. In the heating zone of the flameless combustor, a catalytic surface may be provided to lower the auto-ignition temperature of the fuel and air mixture.
Heat may be supplied to a formation from a surface heater. The surface heater may produce combustion gases that are circulated through wellbores to heat the formation. Alternately, a surface burner may be used to heat a heat transfer fluid that is passed through a wellbore to heat the formation. Examples of fired heaters, or surface burners that may be used to heat a subterranean formation, are illustrated in U.S. Pat. Nos. 6,056,057 to Vinegar et al. and 6,079,499 to Mikus et al., which are both incorporated by reference as if fully set forth herein.
Coal is often mined and used as a fuel within an electricity generating power plant. Most coal that is used as a fuel to generate electricity is mined. A significant number of coal formations are, however, not suitable for economical mining. For example, mining coal from steeply dipping coal seams, from relatively thin coal seams (e.g., less than about 1 meter thick), and/or from deep coal seams may not be economically feasible. Deep coal seams include coal seams that are at, or extend to, depths of greater than about 3000 feet (about 914 m) below surface level. The energy conversion efficiency of burning coal to generate electricity is relatively low, as compared to fuels such as natural gas. Also, burning coal to generate electricity often generates significant amounts of carbon dioxide, oxides of sulfur, and oxides of nitrogen that are released into the atmosphere.
Synthesis gas may be produced in reactors or in situ within a subterranean formation. Synthesis gas may be produced within a reactor by partially oxidizing methane with oxygen. In situ production of synthesis gas may be economically desirable to avoid the expense of building, operating, and maintaining a surface synthesis gas production facility. U.S. Pat. No. 4,250,230 to Terry, which is incorporated by reference as if fully set forth herein, de
de Rouffignac Eric Pierre
Fowler Thomas David
Karanikas John Michael
Maher Kevin Albert
Ryan Robert Charles
Shell Oil Company
Suchfield George
LandOfFree
In situ thermal processing of hydrocarbons within a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with In situ thermal processing of hydrocarbons within a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and In situ thermal processing of hydrocarbons within a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3201704